簡易檢索 / 詳目顯示

研究生: 賈昊承
Chia, Hao-Cheng
論文名稱: 以基因規劃法與蒙地卡羅樹搜尋設計卡牌遊戲策略—以爐石戰記為例
Designing Card Game Strategies with Genetic Programming and Monte-Carlo Tree Search — A Case Study of Hearthstone
指導教授: 蔣宗哲
Chiang, Tsung-Che
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 48
中文關鍵詞: 基因規劃法蒙地卡羅樹搜尋昂貴優化爐石戰記人工智慧
DOI URL: http://doi.org/10.6345/NTNU202001490
論文種類: 學術論文
相關次數: 點閱:152下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 收集類卡牌遊戲 (Collectible Card Games, CCG) 的AI研究在近年來逐漸火熱,而爐石戰記 (Hearthstone) 是目前全世界最熱門的線上卡牌遊戲 ,在2018年底已經超過一億名玩家。本論文將透過基因規劃法 (Genetic Programming, GP) 產生爐石戰記的出牌策略,目的是希望僅使用基本的爐石戰記領域知識 (domain knowledge) 就能自動化地演化出不錯的出牌策略。並進一步將此策略套用在蒙地卡羅樹搜尋 (Monte-Carlo Tree Search, MCTS) 的模擬策略中,以提升MCTS之效能。此外,為了改善本論文基因規劃法評估時間過長的問題,我們使用昂貴優化中的適應值近似法減少了10% - 20% 的實驗時間。最後,我們將與COG 2019 爐石比賽第 1 名以及CIG 2018爐石比賽第10名的AI對戰,以評估本論文所提出之策略的效能。透過分析基因規劃法的染色體結構,我們能了解哪些盤面資訊對爐石戰記的出牌策略是重要的,也能讓爐石戰記玩家快速的了解並參考獲勝的關鍵策略。我們也希望在未來能將此研究方法應用在其它遊戲中。

    致謝 i 中文摘要 ii 目錄 iii 附表目錄 iv 附圖目錄 v 第一章 緒論 1 1.1 研究背景與動機 1 1.2 爐石戰記 1 1.2.1 牌組類型 3 1.3 研究目的 4 1.4 論文架構 5 第二章 文獻探討 6 2.1 基因規劃法 (Genetic Programming, GP) 6 2.2 適應值近似法 7 2.3 蒙地卡羅樹搜尋 (Monte-Carlo Tree Search, MCTS) 9 2.3.1 蒙地卡羅方法 (Monte-Carlo method) 11 2.3.2 上界信賴區間公式 (Upper Confidence Bounds, UCB1) 12 2.4 爐石戰記AI相關文獻 13 第三章 研究方法 17 3.1 使用基因規劃法產生爐石戰記策略 17 3.2 編碼 (encoding) 19 3.3 解碼 (decoding) 20 3.4 適應性評估 (fitness function) 23 3.5 適應值近似法 24 3.6 初始化族群、選擇、交配與突變 26 3.7 基因規劃法與蒙地卡羅樹搜尋結合之應用 27 第四章 實驗結果與分析 30 4.1 實驗環境 30 4.2 效能指標 30 4.3 參數設定 30 4.4 比較文獻 31 4.5 實驗結果與分析 32 4.5.1 適應值近似法之閥值比較 32 4.5.2 基因規劃法產生之爐石戰記策略之效能評估 32 4.5.3 使用隨機模擬策略MCTS效能評估 34 4.5.4 使用基因規劃法產生之模擬策略MCTS效能評估 35 4.6 AI效能總結 37 4.7 最佳染色體結構分析 40 第五章 結論與未來展望 45 參考文獻 46

    [1]遊戲王 - 怪獸之決鬥 (Yu-Gi-Oh! Duel Monsters) https://en.wikipedia.org/wiki/ Yu-Gi-Oh!_Duel_Monsters
    [2]魔法風雲會 (Magic: The Gathering) https://magic.wizards.com/zh-hant
    [3]爐石戰記 (Hearthstone) https://playhearthstone.com/zh-tw/
    [4]J. R. Koza,“Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems,”Report No. STANCS-90-1314, Stanford University, Stanford, CA, 1990.
    [5]J. R. Koza,“Genetic programming: on the programming of computers by means of natural selection,”MIT Press, Cambridge, MA, 1992.
    [6]M. Bhattacharya,“Evolutionary approaches to expensive optimisation,”International Journal of Advanced Research in Artificial Intelligence, vol. 2, no. 3, pp. 53–59, 2013.
    [7]A. Esparcia-Alcazar and J. Moravec,“Fitness approximation for bot evolution in genetic programming,”Soft Computing, vol. 17, no. 8, pp. 1479–1487, 2013.
    [8]Unreal Tournament 2004 (UT2004) https://en.wikipedia.org/wiki/Unreal_Tournament_2004
    [9]R. Coulom,“Efficient selectivity and backup operators in Monte-Carlo tree search,”International Conference on Computers and Games, pp. 29–31, 2006.
    [10]C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,“A survey of Monte-Carlo tree search methods,”IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.
    [11]P. Auer, N. Cesa-Bianchi, and P.Fischer,“Finite-time analysis of the multiarmed bandit problem,”Machine Learning, vol. 47, no. 2, pp. 235–256, 2002.
    [12]L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” European Conference on Machine Learning, pp. 282–293, 2006.
    [13]A. Dockhorn, M. Frick, U. Akkaya, and R. Kruse, “Predicting opponent moves for improving hearthstone AI,” International Conference on Information Processing and Management of Uncertainty in KnowledgeBased Systems, pp. 621–632, 2018.
    [14]A. Saffidine, T. Cazenave, and J. Méhat,“UCD: Upper confidence bound for rooted directed acyclic graphs,”Knowledge-Based Systems, vol. 34, pp. 26–33, 2012.
    [15]J. S. B. Choe and J. Kim,“Enhancing monte carlo tree search for playing hearthstone,”IEEE Conference on Games, pp. 1–7, 2019.
    [16]M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm for near-optimal planning in large Markov decision processes,”International Joint Conference on Artificial Intelligence, pp. 1224–1231, 1999.
    [17]S. Zhang and M. Buro,“Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events,”IEEE Conference on Computational Intelligence and Games, pp. 309–316, 2017.
    [18]M. Swiechowski, T. Tajmajer, and A. Janusz,“Improving hearthstone AI by combining mcts and supervised learning algorithms,”IEEE Conference on Computational Intelligence and Games, pp. 1–8, 2018.
    [19]A. Santos, P. A. Santos, and F. S. Melo, “Monte-Carlo tree search experiments in hearthstone,”IEEE Conference on Computational Intelligence and Games, pp. 272–279, 2017.
    [20]P. García-Sánchez, A. Tonda, A. J. Fernández-Leiva, and C. Cotta,“Optimizing Hearthstone agents using an evolutionary algorithm,”Knowledge-Based Systems, 2019.
    [21]M. A. Potter and K. A. De Jong,“Cooperative coevolution: An architecture for evolving coadapted subcomponents,”Evolutionary Computation, vol. 8, no. 1, pp. 1–29, 2000.
    [22]CIG Hearthstone 2018, COG Hearthstone 2019, and 2020. https://dockhorn.antares.uberspace.de/wordpress/
    [23]C. D. Ward and P. I. Cowling, “Monte-Carlo search applied to card selection in magic: the gathering,”IEEE Symposium on Computational Intelligence in Games, pp. 9–16, 2009.
    [24]P. I. Cowling, C. D. Ward, and E. J. Powley, Ensemble determinization in monte carlo tree search for the imperfect information card game magic: The gathering,”IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 4, pp. 241–257, 2012.
    [25]B. E. Childs, J. H. Brodeur, and L. Kocsis,“Transpositions and move groups in Monte-Carlo tree search,”IEEE Symposium on Computational Intelligence and Games, Perth, Australia, pp. 389–395, 2008.
    [26]P. García-Sánchez, A. Tonda, G. Squillero, A. Mora, and J. Merelo,“Evolutionary deckbuilding in hearthstone,”IEEE Conference on Computational Intelligence and Games, pp. 1–8, 2016.
    [27]P. García-Sánchez, A. Tonda, A. M. Mora, G. Squillero, and J. J. Merelo,“Automated playtesting in collectible card games using evolutionary algorithms: A case study in hearthstone,”Knowledge-Based Systems, vol. 153, pp. 133–146, 2018.
    [28]SabberStone, https://github.com/HearthSim/SabberStone
    [29]L. Piotrowski , S. Mittenentzwei , and T. Heimbrodt, https://dockhorn.antares.uberspace.de/wordpress/bot-downloads/
    [30]E. Håkonsen, 2018, Available: https://www.reddit.com/r/hearthstone/comments/7l1ob0/i_wrote_a_masters_thesis_on_effective_hearthstone/
    [31]A. M. Alhejali and S. M. Lucas,“Using genetic programming to evolve heuristics for a Monte-Carlo tree search Ms Pac-Man agent,”IEEE Conference on Computational Intelligence and Games, pp. 65–72, 2013.
    [32]D.E. Knuth and R.W. Moore,“An analysis of alpha-beta pruning.”Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.
    [33]A. Benbassat and M. Sipper,“EvoMCTS: Enhancing MCTSbased Players Through Genetic Programming.”IEEE Conference on Computational Intelligence and Games, pp. 57–64, 2013.

    下載圖示
    QR CODE