簡易檢索 / 詳目顯示

研究生: 林義斌
論文名稱: 電腦輔助設計實體建模表現與空間能力關係之研究
A Study of the Relationship between the Performance of CAD Solid Modeling and Spatial Ability
指導教授: 莊修田
Chuang, Hsiu-Tyan
饒達欽
Rau, Dar-Chin
學位類別: 博士
Doctor
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 472
中文關鍵詞: 工程圖學電腦輔助設計實體模型空間能力視覺化視覺分割
英文關鍵詞: Engineering Graphics, Computer-Aided Design, Solid Model, Spatial Ability, Visualization, Visual Parsing
論文種類: 學術論文
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的工程圖學,基於正投影原理,透過平面多視圖描述空間中物體的型態和尺寸;目前工程領域使用的電腦輔助設計(CAD)軟體,則透過實體模型技術直接在電腦裡建立物體的3D模型,等到模型建立之後,系統也能自動產生各種圖形,不必另外繪製。這種以3D模型為主的設計繪圖和溝通方式,具有多種效用和良好的視覺效果,也是同步工程設計的關鍵。由此可知,電腦輔助設計的使用和普及,不僅改變傳統圖形的溝通方式和設計製造的程序,也將改變工程人員的思維。
    圖學與視覺化的研究一向密不可分。傳統上,視覺化能力在許多以圖形表達的學科,或需要依賴空間能力的專業領域,具有高度的相關和預測效果。大部分學者也都相信,空間能力可以透過工程圖學的訓練和學習加以改善。由於3D CAD已經成為工程設計的主要媒介,因此,實體模型的使用,是否會影響人們視覺化能力的發展和專業表現?實體建模的構念,是否會改變傳統空間能力的定義、成分和測量方式?值得深入探討。
    本研究旨在探討以實體模型為主的3D CAD與圖形溝通和空間視覺化的關係。為達研究目的,採混合設計取向,分成探索與實驗兩階段。研究的探索階段,主要以專家訪談和個案觀察為主,旨在瞭解實體建模的構念;研究的實驗階段,則根據第一階段的研究結果設計教學實驗,旨在探討實體建模與空間視覺化的關係,以及影響實體建模表現的因素。具體來說,本研究主要結論如下:(1)CAD改變傳統圖形溝通的方式;(2)實體建模與傳統工程繪圖的觀念及所需的心理能力已經不同;(3)視覺分割和組合是實體建模的重要構念;(4)實體模型的操弄和學習可以促進視覺化能力的發展;(5)視覺分割和組合是影響實體建模表現的主要因素。

    Conventionally, engineering graphics is based on the orthography and presents an real object with the abstract and planr multi-views to describe the shape and dimension. Nowadays, the 3D CAD in the domain of engineering and manufacturing, which is based on the technique of solid modeling, is constructing a 3D virtual model with software directly. While the model was completed, all of the desired graphics will be generated automatically. Due to the excellent visual effect and various availability of 3D solid model, the CAD database also becomes the key factor of concurrent engineering. Therefore, the application and popularity of CAD, not only changing the process of engineering design and manufacture, but also altering the way of graphic communication, as well as the design thinking of engineers.
    There is an intimate connection between the investigation of graphics and visualization. Traditionally, the ability of visualization is very important and possesses high correlation and predictability in many scientific disciplines which require communication with graphics as well as various professional and technological tasks which rely on spatial ability. Most researchers believed that spatial ability could be improved significantly through the learning and training of engineering graphics. Since 3D CAD is becoming the central media of graphic expression, it is very important to probe whether the definition, components and measurement of traditional spatial ability might required revision or not.
    This paper is aimed at the investigation of the relationship between the performance of 3D solid modeling and graphic communication as well as spatial visualization. For these purposes, this study adopted a mixed-method approach. The first stage was an exploratory design, which was done mainly by way of interviews with experts and case observation. The findings and results were to be referred to for the instructional experiment in the next step. The second stage was an experimental design of nonequivalent pretest-posttest, which was used to explain the findings of the first stage. Concretely speaking, the conclusions of this paper are as follows: 1) CAD is changing the way of conventional graphic communication; 2) the concept and required mental skills between 3D solid modeling and traditional engineering graphics are totally different; 3) the skill of visual parsing and mental composing are the principal competence of solid modeling; 4) the learning and manipulating of 3D solid model are beneficial to the spatial visualization; and 5) the skill of visual parsing and mental composing are the primary factors that affect the performance of solid modeling.

    謝 誌 中文摘要 英文摘要 目 錄 第一章 緒論……………………………………………………………… 1 第一節 研究動機…………………………………………………… 2 第二節 研究目的…………………………………………………… 8 第三節 名詞解釋…………………………………………………… 13 第四節 研究範圍與限制…………………………………………… 16 第二章 文獻探討……………………………………………………… 19 第一節 圖學與電腦輔助設計概論………………………………… 20 第二節 實體模型概論……………………………………………… 35 第三節 空間能力研究的發展……………………………………… 54 第四節 空間能力的成分及測量…………………………………… 67 第五節 美國工程圖學與空間能力研究概況…………………… 114 第六節 我國空間能力研究概況………………………………… 137 第七節 3D實體建模相關研究及理論…………………………… 146 第三章 研究設計與實施……………………………………………… 159 第一節 研究設計………………………………………………… 159 第二節 研究架構………………………………………………… 162 第三節 研究方法與研究對象…………………………………… 164 第四節 研究工具………………………………………………… 171 第五節 資料處理………………………………………………… 187 第四章 研究結果與討論……………………………………………… 191 第一節 專家訪談結果與討論…………………………………… 192 第二節 個案觀察結果與討論…………………………………… 201 第三節 教學實驗結果與討論…………………………………… 237 第五章 結論與建議…………………………………………………… 255 第一節 結論……………………………………………………… 256 第二節 建議……………………………………………………… 265 參考文獻………………………………………………………………… 271 附 錄………………………………………………………………… 299 附錄一、專家訪談之半結構問卷…………………………………… 301 附錄二、個案觀察試題之解答及繪圖步驟………………………… 305 附錄三、個案觀察錄影工具--Camtasia Studio基本設定……… 321 附錄四、普度空間視覺化測驗題本、答案紙及標準答案………… 329 附錄五、零件組合測驗題本、答案紙及標準答案………………… 355 附錄六、3D實體建模實作評量測驗題本及成績登記表…………… 377 附錄七、個案觀察之解題歷程……………………………………… 407 附錄八、3D實體建模教學干預課程內容…………………………… 427 表 目 錄 表2-1 Wattanawaha的空間任務DIPT分類系統…………………………… 66 表2-2 Eliot和Smith的空間能力測驗分類架構…………………………… 75 表2-3 Eliot和Smith與Wiesen的空間能力測驗分類比較………………… 95 表2-4 McGee的空間能力成分及其測驗工具………………………………… 98 表2-5 Maier的空間能力成分調查…………………………………………102 表2-6 Olkun的空間能力及其測驗工具……………………………………103 表2-7 Eliot、Wiesen和Kang的空間能力測驗分類比較……………………145 表3-1 3D CAD教學進度表……………………………………………………170 表3-2 實體建模測驗選題雙向細目表………………………………………185 表4-1 個案觀察及解題結果一覽表…………………………………………202 表4-2 空間能力、組合能力與實體建模表現分數之統計描述……………239 表4-3 配對樣本統計量………………………………………………………240 表4-4 配對樣本相關表………………………………………………………240 表4-5 配對樣本檢定表………………………………………………………240 表4-6 獨立樣本組別統計量…………………………………………………241 表4-7 獨立樣本檢定表………………………………………………………241 表4-8 空間視覺化能力測驗前、後測分數之相關係數表…………………243 表4-9 空間視覺化能力測驗前測與組合能力測驗分數之相關係數表……243 表4-10 空間視覺化能力前測與實體建模實作評量分數之相關係數表……244 表4-11 組合能力測驗與實體建模實作評量分數之相關係數表……………244 圖 目 錄 圖1-1 傳統工程圖形溝通…………………………………………………… 9 圖1-2 3D實體模型電腦輔助設計功能示例………………………………… 11 圖2-1 Dürer的人類頭部投影圖…………………………………………… 22 圖2-2 立體圖表示法………………………………………………………… 24 圖2-3 物體的平面投影圖和等角圖………………………………………… 24 圖2-4 想像的交互作用……………………………………………………… 33 圖2-5 基本幾何型體………………………………………………………… 43 圖2-6 物體的分解與組成…………………………………………………… 44 圖2-7 實體組合原理………………………………………………………… 45 圖2-8 布林運算原理………………………………………………………… 46 圖2-9 傳統設計程序………………………………………………………… 47 圖2-10 CAD資料庫為同步工程的核心……………………………………… 50 圖2-11 同步工程的模型……………………………………………………… 50 圖2-12 同步工程設計概念…………………………………………………… 51 圖2-13 同步工程圖學概念…………………………………………………… 53 圖2-14 Tarte的空間能力分類結構………………………………………… 70 圖2-15 仿製和迷宮測驗……………………………………………………… 76 圖2-16 圖形嵌入測驗………………………………………………………… 77 圖2-17 視覺記憶測驗………………………………………………………… 78 圖2-18 紙型版測驗…………………………………………………………… 79 圖2-19 圖形旋轉測驗………………………………………………………… 81 圖2-20 積木測驗……………………………………………………………… 82 圖2-21 積木旋轉測驗………………………………………………………… 83 圖2-22 紙張摺疊測驗………………………………………………………… 85 圖2-23 表面展開測驗………………………………………………………… 86 圖2-24 透視測驗……………………………………………………………… 88 圖2-25 讀圖測驗……………………………………………………………… 89 圖2-26 線條追蹤測驗………………………………………………………… 90 圖2-27 形狀配合測驗………………………………………………………… 90 圖2-28 視覺比較測驗………………………………………………………… 91 圖2-29 物體旋轉測驗………………………………………………………… 91 圖2-30 切割測驗……………………………………………………………… 91 圖2-31 拼圖測驗……………………………………………………………… 92 圖2-32 打孔測驗……………………………………………………………… 92 圖2-33 隱藏積木測驗………………………………………………………… 92 圖2-34 積木計算測驗………………………………………………………… 93 圖2-35 方盒製作測驗………………………………………………………… 93 圖2-36 已知形狀摺紙測驗…………………………………………………… 93 圖2-37 未知形狀摺紙測驗………………………………………………… 94 圖2-38 零件組合測驗………………………………………………………… 94 圖2-39 Thurston機械性向測驗的積木組合分測驗………………………… 96 圖2-40 空間關係和空間視覺化的測量……………………………………… 99 圖2-41 測量五種空間能力成分的測驗……………………………………100 圖2-42 心理旋轉測驗試題範例……………………………………………110 圖2-43 普度空間視覺化測驗試題範例……………………………………112 圖2-44 立體旋轉空間定位測驗範例………………………………………141 圖2-45 平面旋轉空間定位測驗範例………………………………………141 圖2-46 立體展平空間關係測驗範例………………………………………141 圖2-47 型版摺合空間關係測驗範例………………………………………141 圖2-48 型版分解空間關係測驗範例………………………………………142 圖2-49 型版組合空間關係測驗範例………………………………………142 圖2-50 表面相交線形成空間感觀測驗範例………………………………142 圖2-51 型版連結空間視覺測驗範例………………………………………142 圖2-52 型版組合空間視覺測驗範例………………………………………143 圖2-53 圖形對應空間關係測驗範例………………………………………143 圖2-54 物體多向圖形空間組織測驗範例…………………………………143 圖2-55 平面轉換立體空間組織測驗範例…………………………………143 圖2-56 概化圓錐的各種造型………………………………………………153 圖2-57 Biederman的幾何離子………………………………………………154 圖2-58 幾何離子與物體辨識………………………………………………154 圖2-59 物體的內隱與外顯型態……………………………………………156 圖3-1 混合模式設計的種類………………………………………………161 圖3-2 研究架構……………………………………………………………163 圖3-3 實驗設計……………………………………………………………169圖3-4 個案觀察試題一:簡易接頭三視圖…………………………………176 圖3-5 個案觀察試題二:滑塊三視圖………………………………………177 圖3-6 個案觀察試題三:支架三視圖………………………………………178 圖3-7 個案觀察試題四:複雜本體三視圖…………………………………179 圖3-8 個案觀察試題五:曲面物體三視圖…………………………………180 圖3-9 組合測驗範例………………………………………………………183 圖3-10 組合測驗範例解答…………………………………………………183 圖3-11 實體建模實作評量試題範例………………………………………186 圖4-1 個案一:簡易接頭的解題歷程………………………………………205 圖4-2 個案一:滑塊的解題歷程……………………………………………206 圖4-3 個案一:支架解題歷程的部分畫面…………………………………207 圖4-4 個案一:複雜本體的解題歷程………………………………………209 圖4-5 個案一:曲面物體的解題結果………………………………………210 圖4-6 個案二:簡易接頭的解題歷程………………………………………211 圖4-7 個案二:滑塊的解題歷程……………………………………………213 圖4-8 個案二:支架的解題歷程……………………………………………214 圖4-9 個案二:複雜本體的解題歷程………………………………………216 圖4-10 個案二:曲面物體的解題歷程………………………………………217 圖4-11 個案三:簡易接頭的解題歷程………………………………………219 圖4-12 個案三:滑塊的解題歷程……………………………………………220 圖4-13 個案三:支架的解題歷程……………………………………………221 圖4-14 個案三:複雜本體的解題歷程………………………………………223 圖4-15 個案三:曲面物體的解題歷程………………………………………224 圖4-16 個案四:簡易接頭的解題歷程………………………………………226 圖4-17 個案四:滑塊的解題歷程……………………………………………227 圖4-18 個案四:支架的解題歷程……………………………………………228 圖4-19 個案四:複雜本體的解題歷程………………………………………229 圖4-20 個案四:曲面物體的解題歷程………………………………………231 圖4-21 立方體的三視圖……………………………………………………232 圖4-22 曲面物體的三視圖為該物體的邊視圖……………………………233 圖4-23 邊視圖無法交集出物體的曲面……………………………………233 圖4-24 實體建模練習範例…………………………………………………245 圖4-25 實體建模範例之解題步驟…………………………………………246 圖4-26 實體建模範例之正確解法(一)……………………………………247 圖4-27 實體建模範例之正確解法(二)……………………………………248 圖4-28 實體建模範例之正確解法(三)……………………………………249 圖4-29 實體建模範例之正確解法(四)……………………………………250 圖4-30 實體建模範例之不當解法(一)……………………………………251 圖4-31 實體建模範例之不當解法(二)……………………………………252 圖4-32 實體建模範例之不當解法(三)……………………………………253

    CAD技術發展歷程概覽(無日期)。CAD世界網。2007年10月15日,取自:http://www.icad.com.cn/ziliaoku/ShowArticle.asp?ArticleID=24031
    林金定、嚴嘉楓、陳美花(2007)。質性研究方法:訪談模式與實施步驟分析,身心障礙研究, 3(2),122-136。
    邱皓政(2005)。量化研究法(一):研究設計與資料處理。台北:雙葉書廊。
    陳向明(2000)。質化研究方法與社會科學研究。北京:教育科學出版社。
    陳永昌、李維華(2005)。電腦輔助繪圖AutoCAD®2005。台北:全華科技圖書股份有限公司。
    康鳳梅、許榮添、詹世良編著(2005)。循序學習SolidWorks® 2005。台北:全華科技圖書股份有限公司。
    郭宏賓、江俊顯、吳明勳、廖基堯(2006)。深入淺出零件設計--SolidWorks® 2006。台北:全華科技圖書股份有限公司。
    潘淑滿(2003)。質性研究理論與應用。台灣:心理出版社。
    襲充文(1992)。眼前世界-計算視學的觀點。科學月刊,266。2007年12月15日,取自:http://209.85.175.104/search?q=cache:_bZn_G5h_SwJ:210.240.178.2/science30/disc2/content/1992/00020266/0010.htm+%22%E5%9C%93%E9%8C%90%22+binford&hl=zh-TW&ct=clnk&cd=1&gl=tw&client=firefox-a
    Adanez, G. P., & Velasco, A. D. (2002). Predicting academic success of engineering students in technical drawing from visualization test scores. Journal for Geometry and Graphics, 6(1), 99-109.
    Ahmed, I., & Blustein, J. (2005). Navigation in information space: How does spatial ability play a part? Proceedings of IADIS International Conference on Web Based Communities, 119-125.
    Aldrich, B. M. (1945). An isometric approach to descriptive geometry. Journal of Engineering Drawing, 9(1), 17-19, 29.
    Alexander, W. P. (1935). Intelligence concrete and abstract. British Journal of Psychology Supplementary, 6, 169-177.
    Alias, M. (2000). Spatial visualization ability and civil engineering problem solving. Unpublished doctoral thesis, University of Surrey. Guilford, United Kingdom.
    Alias, M., Black, T. R., & Gray, D. E. (2002). Effect of instructions on spatial visualization ability in civil engineering students [Electronic version]. International Education Journal, 3(1), 1-12.
    Allen, B. (1998). Information space representation in interactive systems: Relationship to spatial abilities. Proceedings of the 3rd ACM conference on Digital Libraries, 1-10. June 23-26, Pittsburgh, PA.
    Anastasi, A. (1958). Differential psychology: Individual and group differences in behavior (3rd ed.). New York: MacMillan.
    Anand, V. B., Aziz, N. M., & Agrawal, C. (1987). Use of 3D graphics to improve visualization skills? Engineering Design Graphics Journal, 51(2), 25-29.
    Anderson, G. V., Fruchter, B., Manuel, H. T., & Worchel, P. (1954). Technical report - Survey of published data and current status of research on spatial factors. University of Texas.
    Anderson, J. R. (1996). ACT a simple theory of complex cognition. American Psychologist, 51(4), 355-365.
    Anderson, L.W., & Krathwohl, D. R. (Eds.) (2001). A taxonomy for Learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York: Addison Wesley Longman.
    Arnheim, R. (1969). Visual thinking. Berkeley: University of California.
    Aron A., & Aron E. N. (2003). Statistics for Psychology. Prentice Hall, Inc.
    ASEE (1955). The Grinter Report. Retrieved May 13, 2007, from http://www.asee.org/resources/beyond/grinter.cfm
    Austin, J. & Delaney, P. F. (1998). Protocol analysis as a tool for behavior analysis. Analysis Verbal Behavior, 15, 41-56.
    Baartmans, B. G., & Sorby, S. A. (1996). Making connections: spatial skills and engineering drawings. The Mathematics Teacher, 89(4), 348-357.
    Babbie, E. (1986). The practice of social research. Belmont, CA: Wadsworth.
    Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20, 327-344.
    Barke, H. D. (1993). Chemical education and spatial ability. Journal of Chemical Education, 70, 968-971.
    Barkowsky, T. (2001). Mental processing of geographic knowledge. In D. R. Montello (Ed.), Spatial information theory foundations of geographic information science (pp. 371-386). Berlin: Springer.
    Barr, R. E., & Juricic, D. (Eds.) (1990). The engineering design graphics (EDG) curriculum modernization project. Proceedings of the NSF Symposium on Modernization of the Engineering Design Graphics Curriculum, Austin, TX.
    Barr, R. E., & Juricic, D. (1994). From drafting to modern design representation: The evolution of engineering design graphics. Journal of Engineering Education, 81(1), 26-29.
    Barr, R. E., Juricic, D., & Krueger, T. J. (1994). The role of graphics and modeling in the concurrent engineering environment. Engineering Design Graphics Journal, 58(3), 12-21.
    Barr, R. E., Juricic, D., Krueger, T. J., Wood, B. H., & Miller, L. S. (1997). Engineering design graphics workbook: A concurrent engineering approach. Mission, KS: Schroff Development Corporation.
    Basham, K. L. (2007). The effects of 3-Dimensional CADD modeling software on the development of spatial ability of night grade technology discovery students. Unpublished doctoral dissertation, University of Southern Mississippi.
    Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). Spatial visualization, formal reasoning, and geometric problem-solving strategies of pre-service elementary teachers. Focus on Learning Problems in Mathematics, 11 (4), 17-30.
    Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal of Research in Mathematics Education, 21(11), 47-60.
    Battista, M. T. (1994). On Greeno’s environmental / model view of conceptual domains: A spatial / geometric perspective. Journal for Research in Mathematics Education, 25(1), 86-94.
    Battista, M. T., & Clemens, D. H. (1996). Student’s understanding of three-dimensional rectangular arrays of cubes. Journal for research in mathematics education, 27, 258-292.
    Battista, M.T., & Clements, D. H. (1998). Finding the number of cubes in rectangular cube buildings. Teaching Children Mathematics, 4(5), 258-264.
    Battista, M. T. (1999). The importance of spatial structuring in geometric reasoning. Teaching Children Mathematics, 6(3), 170-177.
    Baylis, G. C., & Driver, J. (1994). Parallel computation of symmetry but not repetition in single visual objects. Visual Cognition, 1, 377-400.
    Baylis, G. C., & Driver, J. (1995a). One-sided edge assignment in vision: 1. Figure-ground segmentation and attention to objects. Current Directions in Psychological Science, 4(5), 140-146.
    Baylis, G. C., & Driver, J. (1995b). Obligatory edge assignment in vision - the role of figure and part segmentation in symmetry detection. Journal of Experimental Psychology: Human Perception and Performance, 21, 1323-1342.
    Beaumont, J. G. (1998). Visual-spatial skill and standard psychometric tests. In N. Foreman & R. Gillett (Eds.), Handbook of Spatial Research Paradigms and Methodologies, V. 2: Clinical and Comparative Studies (pp. 11-32). East Sussex, U.K.: Psychology Press.
    Belz, H. F., & Geary, D. C. (1984). Father’s occupation and social background: Relation to SAT scores. American Educational Research Journal, 21(2), 473-478.
    Ben-Chaim, D., Lappan G., & Houang, R. T. (1985). Visualizing rectangular solids made of small cubes: Analyzing and effecting students' performance. Educational Studies in Mathematics, 16 (4), 389-409.
    Ben-Chaim, D., Lappan, G., & Houang, R. T. (1986). Development and analysis of a spatial visualization test for middle school boys and girls. Perceptual and Motor Skills, 63, 659-669.
    Ben-Chaim, D., Lappan G., & Houang, R. T. (1988). The Effect of Instruction on Spatial Visualization Skills of Middle School Boys and Girls. American Educational Research Journal, 25(1), 51-71.
    Ben-Chaim, D., Lappan, G., & Houang, R. T. (1989). The role of visualization in the middle school mathematics curriculum. Focus on Learning Problems in Mathematics, 11, 49- 60.
    Bender, D.S., & Milakofsky, L. (1982). College chemistry and Piaget: the relationship of aptitude and achievement measures. Journal of Research in Science Teaching, 19, 205-216.
    Bennett, B. M., & Hoffman, D. D. (1987). Shape decompositions for visual shape recognition: The role of transversality. In W. A. Richards & S. Ullman (Eds.), Image understanding (pp. 215-256). New Jersey: Ablex.
    Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1974). Manual for the differential aptitude test (5th ed.). New York: The Psychological Corporation.
    Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1989). Differential aptitude tests for personnel and career assessment: Space relations. San Antonio, TX: The Psychological Corporation, Harcourt Brace Jovanovich.
    Bertoline, G. R., & Miller, C. L. (1989). Spatial visualization research and theories: their importance in the development of an engineering and technical design graphics curriculum Model. Paper presented at the ASEE Engineering Design Graphics Division Mid-Year Meeting, Tuscaloosa, AL.
    Bertoline, G. R., & Miller, D. C. (1990). A visualization and orthographic drawing test using the Macintosh computer. Engineering Design Graphics Journal, 54(1), 1-7.
    Bertoline, G. R. (1993). A structure and rationale for engineering geometric modeling. Engineering Design Graphics Journal, 57(3), 5-19.
    Bertoline, G. R., Wiebe, E. N., Miller, C. L., & Nasman, L. O. (1995). Engineering graphics communication. Chicago: Irwin.
    Bertoline, G. R. (2002). Introduction to graphics communications for engineers (2nd ed.). NY: McGraw Hill press.
    Bertoline, G. R., & Wiebe, E. N. (2003). Technical Graphics Communication (3rd Ed.). NY: McGraw Hill Companies, Inc.
    Bethune, J. D. (2004). Engineering graphics with AutoCAD 2004. Upper Saddle River, New Jersey: Pearson Education, Inc.
    Biederman, I. (1985). Human image understanding: Recent research and a theory. Computer Graphics, Vision, and Image Processing, 32, 29-73.
    Biedennan, I. (1986). Human image understanding: Recent research and a theory. In Human and Machine Vision(2nd ed.),13-57. Boston: Academic Press.
    Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115-147.
    Biederman, I., & Cooper, E. E. (1991). Priming contour-deleted images: evidence for intermediate representations in visual object recognition. Cognitive Psychology, 23, 393-419.
    Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human perception and performance, 19(6), 1162-1182.
    Biederman, I. & Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bulthoff (1995). Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1506-1514.
    Biederman, I. (1995). Visual object recognition. In S. M. Kosslyn & D. N. Osherson (Eds.), An Invitation to Cognitive Science (2nd ed.), Volume 2, Visual Cognition (Chapter 4, pp.121-165).Cambridge, MA: MIT Press.
    Bilén, S. G. (Ed.) (2001). Introduction to engineering design. NY: McGraw-Hill.
    Binet, A., & Simon, Th. A. (1905). Méthode nouvelle pour le diagnostic du niveau intellectuel des anormaux. L'Année Psychologique, 11, 191-244.
    Binford, T. (1971, December). Visual perception by computer. Proceedings of IEEE Systems Science and Cybernetics Conference, 183-193. Miami, Florida.
    Bishop, A. J. (1978). Developing students’ spatial ability. The Science Teacher, 45, 20-23.
    Bishop, A. J. (1979). Visualizing and mathematics in a pre-technological culture. Educational Studies in Mathematics, 10, 135-146.
    Bishop, A. J. (1980). Spatial abilities and mathematics education – A review. Educational Studies in Mathematics, 11, 257-269.
    Black, A. A. (2005), Spatial ability and earth science conceptual understanding. Journal of Geoscience Education, 53(4), 402-414.
    Black, E. D. (1965). Engineering graphic course content development study. Journal of Engineering Graphics, 29(3), 13-14, 43-45, 49.
    Black, E. D. (1966a). Comments of the goals of engineering education: Preliminary report. Journal of Engineering Graphics, 30(2), 20-21, 30, 35.
    Black, E. D. (1966b). The thought-model method of teaching spatial visualization. Journal of Engineering Graphics, 30(3), 13-14, 30, 46.
    Blade, M. F. (1949). Experiment in visualization. Journal of Engineering Drawing, 13(3), 20-21, 29-30.
    Blade, M. F., & Watson, W. S. (1955). Increase in spatial visualization test scores during engineering study. Psychological Monographs, 69(12), 1-13.
    Blustein, J., & Satel, J. (2003). The paradox of spatial ability. In Third International Workshop on Spatial Hypertext at ACM Hypertext Conference (HT'03), Nottingham, UK, Aug 26-30.
    Boden, M. (1990). The creative mind: Myths and mechanisms. London: Cardinal.
    Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-18.
    Bonfiglioli, L. (1983). Visibility of spatial bodies: A quick method. Engineering Design Graphics Journal, 47(3), 38-44.
    Booker, P. J. (1963). A history of engineering drawing. London: Chatto & Windus.
    Bowers, D. (1986). Cognitive processing and the teaching of engineering graphics. Engineering Design Graphics Journal, 50(3), 15-18.
    Bowers, D. (1993). Trends and techniques in imaging science. Engineering Design Graphics Journal, 57(3), 26-30.
    Bowers, D. H., & Evans, D. L. (1990, August). The role of visualization in engineering design. Proceedings of the NSF Symposium on Modernization of the Engineering Design Graphics Curriculum, 89-94. Austin, TX.
    Branoff, T. J. (1998). The effects of adding coordinate axes to a mental rotations task in measuring spatial visualization ability in introductory undergraduate technical graphics courses. Engineering Design Graphics Journal, 62(2), 16-34.
    Branoff, T. J. (2000). Spatial visualization measurement: A modification of the Purdue spatial visualization test - Visualization of rotations. Engineering Design Graphics Journal, 64 (2), 14-22.
    Braukmann, J. (1991). A comparison of two methods of teaching visualization skills to college students. Unpublished doctoral dissertation, University of Idaho.
    Braukmann, J., & Pedras, M. J. (1993). Comparison of two methods of teaching visualization skills to college students. Journal of Industrial Teacher Education, 30 (2), 65-80.
    Brenkard, K. A. (1979). Who needs graphics? Engineering Design Graphics Journal, 43(2), 19-20.
    Brody, B. B., & Brody, N. (1976). Intelligence: Nature, determinants and consequences. New York: Academic Press.
    Brooks, R. A. (1981). Symbolic Reasoning Among 3-D Models and 2-D Images. Artificial Intelligence, 17, 265-348.
    Bruce, V., Green, P. R., & Georgeson, M. A. (2003). Visual perception: Physiology, psychology and ecology (4th ed.). Hove & New York: Psychology Press.
    Buchanan, W. (1943). The teaching of drafting. Journal of Engineering Drawing, 7(1), 2-5.
    Buffery, A., & Gray, J. (1972) Sex differences in the development of spatial and linguistic skills. In Ounsted, C. & Taylor, D. (Eds), Gender differences: their ontogeny and significance. Livingstone: Churchill.
    Bundesen, C., & Larsen, A. (1975). Visual transformation of size. Journal of Experimental Psychology: Human Perception and Performance, 1, 214-220.
    Burnet, S. A. & Lane, D. M. (1980). Effects of academic instruction on spatial visualization. Intelligence, 4, 233-242.
    Burt, C. L. (1949). The structure of the mind: A review of the results of factor analysis. British Journal of Educational Psychology, 19, 100 - 111, 176 - 199.
    Calabrese, L., & Marucci, F. S. (2006). The influence of expertise level on the visuo-spatial ability: differences between experts and novices in imagery and drawing abilities. Cognitive Processing, 7(1), 118-120.
    Caldera, Y. M., Culp, A. M., O’Brien, M., Truglio, R. T., Alvarez, M., & Huston, A. C. (1999). Children’s play preferences, construction play with blocks, and visual-spatial skills: Are they related? International Journal of Behavioral Development, 23(4), 855-872.
    Campagnoni, F. R., & Ehrlich, K. (1989). Information retrieval using a hypertext-based help system. ACM Transactions on Information Systems, 7, 271–291.
    Caplan, B., & Romans, S. (1998). Assessment of spatial abilities. In Goldstein, G.; Nussbaum, P. D., & Beers, S. R. (Eds.), Neuropsychology (pp.379-419). New York: Plenum Press.
    Carroll, J. B. (1993). Human cognitive abilities. A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.
    Carter, C. S., LaRussa, M. A., & Bodner, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24, 645-657.
    Carter, P. (2005). The complete book of intelligence tests. John Wiley & Sons Ltd.
    Casey, M. B. (1996). Understanding individual differences in spatial ability within females: A nature / nurture interactions framework. Developmental Review, 16, 241-260.
    Casey, M. B., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32, 28-57.
    Cattell, R. B. (1998). Where is intelligence? Some answers from the triadic theory. In J. J. McArdle & R. W. Woodcock (Eds.), Human cognitive abilities in theory and practice (pp.29-43). New Jersey: Lawrence Erlbaum Associates, Inc.
    Chen, G. J. (2006). Research on the helpful tools of vision and the gamers’ spatial ability in 3D game. Unpublished thesis, National Taiwan University of Science and Technology.
    Chen, S. Y. (2006). Model exploration and validation of the spatial ability aptitude test. Unpublished thesis, National Taiwan University of Science and Technology.
    Chen, C. L. (2003). A study on the correlation between studying technical illustrations and enhancing spatial abilities among mechanical drafting department Students. Unpublished thesis, National Changhua University of Education.
    Chennareddi, L., & Herndon, J.G. (2005). Sex, age, and training modulate spatial memory in the Rhesus monkey. Behavioral Neuroscience, 119(1), 118–126.
    Chester, I. R. (2006). Delineating and developing expertise in three-dimensional computer aided design. Unpublished doctoral dissertation, Griffith University, Australia.
    Chester, I. R. (2007). Teaching for CAD expertise. International Journal of Technology and Design Education, 17(1), 23-35.
    Chuang, J. C. (2004). The effects of applying 3D computer–aided-design drafting software to learn pictorial drafting for the students of drafting departments of high schools in Taiwan. Unpublished Thesis, National Taiwan Normal University.
    Clements, M. A. (1981). Visual imagery and school mathematics. For the Learning of Mathematics, 2, 2-9.
    Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (p.420-464). New York: Macmillan Publishing Company.
    Cobaugh, H. B. (1946). The place of blueprint reading in the technical high school. Journal of Engineering Drawing, 10(1), 5, 7-8.
    Condoor, S. S. (1999). Integrating design in engineering graphics courses using feature-based, parametric solid modeling. Proceedings of the 29th Annual Conference of Frontiers in Education. Retrieved May 15, 2007, from: http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/6763/18174/00841661.pdf?arnumber=841661
    Contero, M., Naya, F., Company, P., Saorín, J. L., & Conesa, J. (2005). Improving visualization skills in engineering education, IEEE Computer Graphics and Applications 25(5), 24-31.
    Cooper, L. A. (1990). Mental representation of three-dimensional objects in visual problem solving and recognition. Journal of Experimental Psychology: Learning, Memory and Cognition, 16, 1097-1106.
    Cox, D. R., & Reid, N. (2000). The theory of the design of experiments, London: Chapman & Hall/CRC.
    Cross, N., Christiaans, H., & Dorst, K. (eds.) (1996). Analysing design activity, Chichester, UK: John Wiley & Sons.
    Crutcher, R. J. (1994). Telling what we know: The use of verbal report methodologies in psychological research. Psychological Science, 5, 241-244.
    Davies, T. N. (1973). Visual perception of engineering drawings. Engineering Designer, 4, 22-31.
    Davies, T. N. (1976). The span of visual perception in engineering drawing. The Communicator of Scientific and Technical Information, 4, 2-11.
    DeJong, P. S. (1977). Improving visualization: Fact or fiction? Engineering Design Graphics Journal, 41(1), 47-53.
    DeLeon, J., & Winek, G. (2000). Incorporating rapid prototyping into the engineering graphics curriculum. Engineering Design Graphics Journal, 64(1), 18-23.
    Del Grande, J. (1990). Spatial sense. Arithmetic Teacher, 37(6), 14-20.
    Demetriou, A., & Kyriakides, L. (2006). The functional and developmental organization of cognitive developmental sequences. British Journal of Educational Psychology, 76, 209-242.
    Deno, J. A. (1995). The relationship of previous experiences to spatial visualization ability. Engineering Design Graphics Journal, 59(3), 5-17.
    Denzin, N. K. (1989). The research act in sociology: A theoretical introduction to sociological methods(3rd ed.). Englewood Cliffs.
    Devon, R., Engle R. S., Foster R. J., Sathianathan, D. & Turner, G. F. (1994). The effect of solid modeling software on 3-D visualization skills. Engineering Design Graphics Journal, 58(2), 4-11.
    Downing, R. E., Moore, J. L., & Brown, S. W. (2005). The effects and interaction of spatial visualization and domain expertise on information seeking. Computers in Human Behavior, 21,195-209.
    Duff, J. M. (1979). Visual perception: the problem of creation virtual space. Engineering Design Graphics Journal, 43(2), 42-43.
    Dyck, J. L., & Smither, J. A. (1994). Age differences in computer anxiety: The role of computer experience, gender and education. Journal of Educational Computing Research, 10, 239–248.
    Eastman, C. (1970). On the analysis of intuitive design processes, In G. T. Moore (Ed.), Emerging Methods in Environmental Design and Planning, Cambridge, MA: MIT Press.
    Edelman, S., & Bulthoff, H. H. (1992). Orientation dependence in: The recognition of familiar and novel views of 3D objects. Vision Research, 32, 2385-4000.
    Egan, D. (1988). Individual differences in human-computer interaction. In M. Helander (Ed.), Handbook of human-computer interaction (pp.543-568). Amsterdam: Elsevier Science Publishers.
    Einstein, A. (1949). Quoted in J. Hadamard, The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
    Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.
    Eliot, J., & Smith, I. M. (1983). An international directory of spatial tests. Windsor, Berkshire, United Kingdom: NFER-Nelson Publishing Company, Ltd.
    Eliot, J. (1987). Models of psychological space: Psychometric, developmental, and experimental approaches. NY: Springer-Verlag.
    El Koussy, A. H. (1935). The visual perception of space. British Journal of Psychology Monograph Supplements, 1-80.
    Embretson, S. E. (1987). Improving the measurement of spatial aptitude by dynamic testing. Intelligence, 11, 333-358.
    Emmett, W. G. (1949). Evidence of a space factor at 11+ and earlier. British Journal of Statistical Psychology, 2, 3–16.
    Ericsson, K. A., & Simon H. A. (1980). Verbal report as data. Psychological Review, 87(3), 215-251.
    Ericsson K., & Simon H. A. (1993). Protocol analysis: verbal reports as data (Revised Edition). Cambridge: MIT Press.
    Ericsson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of thinking during experts’ performance on representative task. In K. A. Ericsson, N. Charness, P. Feltovich, and R. R. Hoffman, R. R. (Eds.), Cambridge handbook of expertise and expert performance (pp.223-242). Cambridge, UK: Cambridge University Press.
    Ethier, S. J., & Ethier, C. A. (2004). AutoCAD in 3 dimensions. Upper Saddle River, New Jersey: Pearson Education, Inc.
    Eyal, R., & Tendick, F. (2001). Spatial ability and learning the use of an angled laparoscope in a virtual environment. Studies in Health Technology and Informatics, 81, 146-152.
    Feng, Y. H. (2005). Research of the correlation of spatial ability scales and mathematics geometry achievements tests. Unpublished thesis, National Taichung University.
    Fennema, E., & Tartre, L. A. (1985). The use of spatial visualization in mathematics by girls and boys. Journal of Research in Mathematics Education, 16, 187-206.
    Ferguson, E. S. (1977). The mind’s eye: Non-verbal thought in technology. Science, 197, 827-836.
    Ferguson, E. S. (1992). Engineering and the Mind’s Eye. Cambridge, MA: The MIT Press.
    Finke, R. A., & Slayton, K. (1988). Explorations of creative visual synthesis in mental imagery. Memory and Cognition, 16, 252-257.
    Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, New Jersey: Lawrence Erlbaum Associates Publishers.
    French, T. E. (1911). A manual of engineering drawing for students and draftsmen. New York: McGraw-Hill Book Co.
    French, J. W. (1951). The description of aptitude and achievement tests in terms of rotated factors. Psychometric Monograph 5. Chicago, IL: University of Chicago Press.
    French, J. W., Ekstrom, R. B., & Price L. A. (1963). Kit of Reference Tests for Cognitive Factors, Princeton, NJ: Educational Testing Service.
    French, T. E. (1976). The educational side of engineering drawing. Engineering Design Graphics Journal, 40(3), 32-35.
    Galton, F. (1880). Mental imagery. Fortnightly Review, 28, 312-324.
    Galton, F. (1883). Inquiries into human faculty and its development. New York: AMS Press.
    Garai, J. E., & A. Scheinfeld. (1968). Sex differences in mental and behavioral traits. Genetic Psychology Monographs 77, 169–299.
    Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
    Gardner, H. (1993). Multiple intelligences: The theory in practice. New York: Basic Books.
    Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century. New York: Basic Books.
    Garfein, A. J., Schaie, K. W., & Willis, S. L. (1988). Microcomputer proficiency in later-middle-aged and older adults: Teaching old dogs new tricks. Social Behavior, 3(2), 131–148.
    Gerardi, J. (1940). Descriptive geometry rides again. Journal of Engineering Drawing, 4(2), 9-10.
    Gillespie, W. H. (1995). Using solid modeling tutorials to enhance visualization skills. Unpublished doctoral Dissertation, University of Idaho.
    Gimmestad, B. J. (1990). Gender differences in spatial visualization and predictors of success in an engineering design course. Proceedings of the National Conference on Women in Mathematics and the Sciences, 133-136.
    Glück, J., & Fitting, S. (2003). Spatial strategy selection: Interesting incremental information. International Journal of Testing, 3(3), 293-308.
    Goddard, H. H. (1910). Four hundred feeble-minded children classified by the Binet method. Pedagogical Seminary, 17, 387-397.
    Godfrey, G. S. (1999). Three-dimensional visualization using solid-model methods: A comparative study of engineering and technology students. Dissertation Abstracts International, 60, 12A. (UMI No. AAI9955758)
    Gomez, L. M., Egan, D. E., & Bowers, C. (1986). Learning to use a text editor: Some learner characteristics that predict success. Human-Computer Interaction, 2, 1–23.
    Gomez, L. M., Egan, D. E., Wheeler, E. A., Sharma, D. K., & Gruchacz, A. M. (1983). How interface design determines who has difficulty learning to use a text editor. In Proceedings of ACM CHI’83 Conference on Human Factors in Computing Systems (pp. 176–181). New York: Association for Computing Machinery.
    Gorska, R., Sorby, S., & Leopold, C. (1998). Gender differences in visualization skills – an international perspective. Engineering Design Graphics Journal, 62, 9-18.
    Goss, L. D. (1981). Consulting in graphics – Good for the faculty and good for the student. Engineering Design Graphics Journal, 45(2), 17-21.
    Gottfredson, L. S. (2000). Intelligence research in the new millennium: Understanding and shaping brains, genes, daily lives and national politics. Proceedings of International Conference on Psychology, Haifa, Israel.
    Graney, M. (1938). A study conducted in connection with the drawing division project on visualization. Journal of Engineering Drawing, 3(2), 18-20.
    Grant, H. E. (1938). The use of mirrors in orthographic projection. Journal of Engineering Drawing, 2(1), 22-26.
    Guay, R. B. (1977). Purdue spatial visualization tests. West Lafayette, IN: Purdue Foundation.
    Guay, R. B. (1980). Spatial ability measurement: A critique and an alternative. A paper presented at the Annual Meeting of the American Education Research Association, April, Boston.
    Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8, 210-215.
    Guay, R. B., & McDaniel, E. (1978). Correlates of performance on spatial aptitude tests. Final Report for the U.S. Army Research Institute.
    Guidera, S. (2002). Computer modeling and visualization in design technology: An instructional model. The Journal of Technology Studies, 28(2), 109-116.
    Guilford, J. P., & J. I. Lacey. (1947). Printed classification tests. A.A.F. Aviation Psychological Progress Research Report, No.5. Washington, D.C.: U.S. Government Printing Office.
    Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.
    Guilford, J.P., & Hoepfner, R. (1971). Analysis of Intelligence, NY: McGraw-Hill.
    Guilford, J. P., & Zimmerman, W. S. (1953). Guilford-Zimmerman Aptitude Survey. Orange, CA: Sheriden Psychological Services.
    Guttman, R. E., Epstein, E., Amir, M., & Guttman, L. (1990). A structural theory of spatial abilities. Applied Psychological Measurement, 14, 217-236.
    Guzman, A. (1971). Analysis of curved line drawings using context and global information. In Machine intelligence, ,. Edinburgh: Edinburgh University Press.
    Hales, V. D. (1939). Development and use of aptitude and training tests in engineering drawing. Journal of Engineering Drawing, 3(2), 7-8.
    Hamley, H. R. (1934). Relational and functional thinking in mathematics. National Council of Teachers of Mathematics, ninth yearbook. New York: Bureau of Publications, Teachers College, Columbia University.
    Hardell, J. A. (1978). Testing student understanding of three-dimensional space. Engineering Design Graphics Journal, 42(1), 10-11.
    Harris, L. J. (1978). Sex differences in spatial ability: Possible environmental, genetic, and neurological factors. In M. Kinsbourne (Ed.), Asymmetrical Function of the Brain (pp. 405-521). London, England: Cambridge University.
    Harris, L. J. (1981). Sex-eelated variations in spatial skill. In Liben, L. S., Patterson, A. H., & Newcombe, N. (Eds.), Spatial representation and behavior across the life span (pp.83-125) New York: Academic Press.
    Heacock, F. A. (1938). Visualization tests for beginners. Journal of Engineering Drawing, 2(2), 18-20.
    Heacock, F. A. (1941). Graphic aids to three-dimensional thinking. Journal of Engineering Drawing, 5(2), 10-11, 21.
    Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory and Cognition, 22, 411-430.
    Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175-191.
    Helstrup, T., & Anderson, R. E. (1991). Imagery in mental construction and decomposition tasks. In Logie, R. H. & Denis, M. (Eds.), Mental images in human cognition (pp.229-240). Amsterdam: Elsevier.
    Henderson, K. (1999). On line and on paper: Visual representations, visual culture, and computer graphics in design engineering. Cambridge, MA: The MIT Press.
    Henderson, R. D., Smith, M. C., Podd, J., & Varela-Alvarez, H. (1995) A comparison of the four prominent user-based methods for evaluating the usability of computer software, Ergonomics, 39, 2030-2044.
    Herman, J. L., Aschbacher, P. R., & Winters, L. (1992). A practical guide to alternative assessment. Alexandria, VA: Association for Supervision and Curriculum Development.
    Hill, L. J. Jr. (1938). What price culture in engineering drawing, descriptive geometry and elementary machine design: Part 1. Journal of Engineering Drawing, 3(2), 6-9.
    Hills, J. R. (1957). Factor-analyzed abilities and success in college mathematics. Educational and Psychological Measurement, 17, 615-622.
    Hoelscher, R. P. (1954). A reappraisal of engineering drawing. Journal of Engineering Drawing, 18(2), 12-15.
    Hoffman, D. D. (1983a). Representing shapes for visual recognition. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA.
    Hoffman, D. D. (1983b). The interpretation of visual illusions. Scientific American, 249, 154-162.
    Hoffman, D. D., & Richards, W. A. (1984). Parts of recognition. Cognition, 18, 65-96.
    Hoffman, D. D., & Singh, M. (1997). Salience of visual parts. Cognition, 63, 29-78.
    Hoffman, D. D., Rodriguez, A., Singh, M., & Nilson, C. (2001). Vision, language, and object parts: The minima-part bias [Abstract]. Journal of Vision, 1(3),420, 420a.
    Howard, W. E. & Musto, J. C. (2006). Introduction to solid modeling using SolidWorks®. NY: The McGraw-Hill Companise, Inc.
    Howe, H. B. (1940). Aims of a modern course in applied descriptive geometry. Journal of Engineering Drawing, 4(2), 2-3.
    Hsi, S., Linn, M. C., & Bell, J. E. (1997). The role of spatial reasoning in engineering and the design of spatial instruction. Journal of Engineering Education, 86(2), 151-158.
    Hulley, C. M. (1977). Punish them for they see not. Engineering Design Graphics Journal, 41(3), 60-61.
    Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a network for shape recognition. Psychological Review, 99(3), 487-517.
    Humphreys, L. G., Lubinski, D., & Yao, G. (1993). Utility of predicting group membership and the role of spatial visualization in becoming an engineer, physical scientist, or artist. Journal of Applied Psychology, 78(2), 250-261.
    Hung, C. Y. (2003). The constructing scales of spatial ability for primary school students. Unpublished thesis, National Changhua University of Education.
    Hyde, J. S. (1981). How large are cognitive gender differences? American Psychologist, 36, 892-901.
    Irwin, R. R. (1948). A non-credit course in drawing in lieu of high school drawing for students deficient in high school drawing. Journal of Engineering Drawing, 12(2), 25.
    Ivins, W. M. (1953). Prints and visual communications. Cambridge, MA: The MIT Press.
    Jackson, C. (2006). The transition from 2D drafting to 3D modeling benchmark report: Improving engineering efficiency. Boston, Massachusetts: AberdeenGroup, Inc. Retrieved May 16, 2007, from http://www.aberdeen.com/summary/report/benchmark/RA_2D_3D_3476.asp
    Jennings, F., Benyon, D., & Murray, D. (1991). Adapting systems to differences between individuals. Acta Psychologica, 78, 243–256.
    Johnson, S., Flinn, J., & Tyer, Z. (1979). Effect of practice and training in spatial skills on embedded figures scores of males and females. Perceptual and Motor Skills, 48, 975-984.
    Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
    Jordan, H. H. (1938). The division of engineering drawing of the S. P. E. E. A brief historical sketch. Journal of Engineering Drawing, 2(2), 12-13.
    Joseph, R. (1988). The right cerebral hemisphere: emotion, music, visual spatial skills, body-image, dreams, and awareness. Journal of Clinical Psychology, 44(5), 630-673.
    Jur, T. A., & Sarraf, M. (1978). A visual aid for instruction in orthographic projection. Engineering Design Graphics Journal, 42(1), 9.
    Kahle, J. B., & Lakes, M. (1983). The myth of equality in science classrooms. Journal of Research in Science Teaching, 20, 131−145.
    Kang, F. M., & Chung, R. G. (1998). A study of solving process of sectional view in engineering graphics by mechanical related students in universities. A project of National Science Council, Taiwan.
    Kang, F. M., & Chung, R. G. (2000). A study of exploring students’ spatial ability of engineering graphics in mechanical department of normal university [Electronic version]. Journal of Taiwan Normal University, 45(1), 59-71. Retrieved May 2, 2007, from http://www.ntnu.edu.tw/acad/pub/pub.htm
    Kang, F. M., Chung, R. G., Liu, J. X., & Lee, J. C. (2002). A study of differences of the spatial ability for students of department of mechanical drawing in vocational high school [Electronic version]. Journal of Taiwan Normal University, 47(1), 55-69. Retrieved May 2, 2007, from http://www.ntnu.edu.tw/acad/pub/pub.htm
    Kang, F. M., Jin, C. L., & Jan, B. J. (2003). The study of editing creative teaching materials in computerizing intersection of engineering drawing to promote the students’ spatial ability [Electronic version]. Journal of Taiwan Normal University, 48(2), 225-238. Retrieved May 2, 2007, from http://www.ntnu.edu.tw/acad/pub/pub.htm
    Kang, F. M., Jin, C. L., Chung, Y. H., Jan, B. J., & Lu, Y. J. (2006). The study of constructing the norms and web site of spatial ability for industrial vocational high school’s students [Electronic version]. Journal of Taiwan Normal University, 51(1, 2), 1-14. Retrieved May 2, 2007, from http://www.ntnu.edu.tw/acad/pub/pub.htm
    Katz, H. H. (1945). Visualization of motion by pivoted cutouts. Journal of Engineering Drawing, 9(3), 23-25, 27-28.
    Kaufmann, H., Steinbügl K., Dünser, A., & Glück, J. (2005). Improving spatial abilities by geometry education in augmented reality - Application and evaluation design. Proceedings of First International VR-Learning Seminar. Retrieved May 12, 2007, from http://www.ims.tuwien.ac.at/media/documents/publications/GeometryEduc_SpatialAbilities_Final.pdf
    Kelley, T. (1928). Crossroads in the mind of man. Stanford, CA: Stanford University Press.
    Kerns, K. A., & Berenbaum, S. A. (1991). Sex differences in spatial ability in children. Behavior Genetics, 21(4), 383-396.
    Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive Science, 8, 255–273.
    Kinsey, B. (2003). Design of a cad integrated physical model rotator. Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition. Retrieved May 12, 2007, from http://www.ni.com/pdf/academic/us/journals/Design_of_a_CAD.pdf
    Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Sciences. Pacific Grove: Brook/Cole Publishing Company.
    Kirkpatrick, J. M. (1997). Engineering drawing and models using AutoCAD® solid modeling and designer. Upper Saddle River, New Jersey: Prentice Hall.
    Kirkpatrick, B. L., & Kirkpatrick, J. M. (2004). AutoCAD for interior design and space planning. New Jersey: Upper Saddle River. Pearson Education, Inc.
    Kirton, E., & Lavoie, S. (2006). Utilizing rapid prototyping for architectural modeling. Engineering Design Graphics Journal, 70(1), 23-28.
    Kliphardt, R. A. (1957). Descriptive geometry courses which comply with the evaluation report. Journal of Engineering Drawing, 21(1), 22-24, 32.
    Kohs, S. C. (1923). Intelligence Measurement. New York: MacMillan.
    Kosslyn,S. M., Reiser, B. J., Farah, M. J. & Fliegel, S. L. (1983). Generating visual images: Units and relations. Journal of Experimental Psychology: General, 112, 278-303.
    Kritchevsky, M. (1988). The elementary spatial functions of the brain. In J. Stiles-Davis, M. Kritchevsky & U. Bellugi (Eds.), Spatial cognition: Brain bases and development (pp.111-140). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Krueger, T. J,. & Barr, R. E. (2007). The concurrent engineering design paradigm is now fully functional for graphics education. Engineering Design Graphics Journal, 71(1), 22-28.
    Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: University of Chicago Press.
    Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.
    Leach, J. A., & Matthews, R. A. (1992). Utilization of solid modeling in engineering graphics courses. Engineering Design Graphics Journal, 56(2), 5-10.
    Lee, P. J. (2003). A study on usability of wayfinding map styles. Unpublished thesis, National Yunlin University of Science and Technology.
    Levens, A. S. (1955). Graphics in an expanding scientific age. Journal of Engineering Drawing, 19(1), 24-25, 29, 31-32.
    Levens, A. S. (1960). Graphic science - a new and challenging frontier. Journal of Engineering Graphics, 24(3), 10-13.
    Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940-949.
    Levy, J. (1980). Cerebral asymmetry and the psychology of man. In M. C. Wittrock (Ed.), The brain and psychology (pp.245-321). New York: Academic Press.
    Liben, L. S. (1988). Conceptual issues in the spatial development of spatial cognition. In J. Stiles-Davis, M. Kritchevsky, & U. Bellugi (Eds.), Spatial cognition: Brain bases and development (pp. 167–194). Hillsdale, NJ: Erlbaum.
    Lieu, D. K., & Sorby, S. A. (2006). Visualization, modeling, and graphics for engineering design. Thomson/Delmar Publishers.
    Lin, H. Y. (2006). Working memory, spatial abilities, and design performance: A latent variable analysis. Unpublished doctoral dissertation, National Chung Cheng University, Taiwan.
    Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. CA: Sage.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498.
    Linn, M. C., & Peterson, A. C. (1986). A meta-analysis of gender differences in spatial ability: Implications for mathematics and science achievement. In J.S. Hyde & M.C. Linn (Eds.), The psychology of gender: Advances trough meta-analysis (pp.67-101). Baltimore: John Hopkins University Press.
    Linn, R. L., & Gronlund, N. E. (2000). Measurement and assessment in teaching (8th ed.). Prentice-Hall Inc.
    Liu, Y. T. (1995). Some phenomena of seeing shapes in design. Design Studies, 16(3), 367-385.
    Lo, Y. W. (2004). The development of a computerized item bank of spatial ability. Unpublished thesis, National Taiwan University of Science and Technology.
    Lockhart, S. D., & Johnson, C. M. (2000). Engineering design communication: Conveying design through graphics. Upper Saddle River, NJ: Prentice Hall.
    Logothetis, N. K., Vetter, T., Hulbert, A., & Poggio, T. (1994). View-based models of 3D object recognition and class-specific invariances. AI Memo 1473, CBCL Paper 94.
    Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlatonal literature. Stanford University School of Education, Aptitude Research Project, Stanford, CA Tech. Rep. No. 8, 1979.
    Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol.40, pp.181-248). Hillsdale, NJ: Erlbaum.
    Lohman, D. F., & Kyllonen, P. C. (1983). Individual differences in solution strategy on spatial tasks. In Dillon, D.F. & Schmeck, R.R. (Eds.), Individual differences in cognition (pp.105-135). New York: Academic Press.
    Lord F. M. (1956). A study of speed factors in tests and academic grades. Psychometrika, 21(1), 31-50.
    Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405.
    Lueptow, R.M., Steger, J., & Snyder, M. (2001). Graphics concepts with Pro/Engineer®. New Jersey: Prentice-Hall, Inc.
    Maccoby E. & Maccoby N. (1954) The interview: A tool of social science. In G. Lindzey(Ed.)Handbook of Social Psychology. Massachusetts: Addison-Wesley.
    Maccoby, E. E., & Jacklin, C. N. (1974). Psychology of sex differences. Stanford University Press.
    Mack, W. E. (1992). The effect of training in computer-aided design on the spatial visualization ability in selected gifted adolescents. Dissertation Abstracts International, 53, 03A. (UMI No. AAG9500831)
    Maier, P. H. (1994). Räumliches Vorstellungsvermögen. Frankfurt/M., Berlin, Bern, New York, Paris and Vienna.
    Maier, P. H. (1996a). Spatial geometry and spatial ability - How to make solid geometry solid? Proceedings of the Annual Meeting of the GDM, 69-81. Retrieved May 2, 2007, from http://webdoc.gwdg.de/ebook/e/gdm/1996/maier.pdf
    Maier, P. H. (1996b). Geschlechtsspezifische Differenzen im räumlichen Vorstellungsvermögen. Psychologie in Erziehung und Unterricht, 43(4), 245-265.
    Maier, P. H. (1996c). Räumliches Vorstellungsvermögen im Geometrieunterricht. Praxis Schule, 5-10, 22-27.
    Maier, P. H. (1998). Spatial geometry and spatial ability – How to make solid geometry solid? In Elmar Cohors-Fresenborg, K. Reiss, G. Toener, & H. G. Weigand (Eds.), Selected Papers from the Annual Conference of Didactics of Mathematics 1996, 63–75. Osnabrueck.
    Mann, C. V. (1944). A partial suggestive analysis of graphic talent. Journal of Engineering Drawing, 8(1), 18-21.
    Marr, D. (1977). Analysis of occluding contour. Proceedings of the Royal Society of London, B, 197, 441-475.
    Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional structure. Proceedings of the Royal Society of London, Series B, 200, 269-294.
    Marr, D. (1980). Visual information processing: The structure and creation of visual representations. Philosophical Transactions of the Royal Society. London, B.290, 199-218.
    Marr, D. (1982). Vision. San Francisco: Freeman Press.
    Mathewson, J. H. (1999). Visual-spatial thinking: an aspect of science overlooked by educators. Sci. Educ. 83, 33–54.
    Maxwell, J. A. (1996). Qualitative research design: An interactive approach. Thousand Oaks, CA: Sage.
    McCuistion, P. J. (1991) Static vs. dynamic visuals in computer-assisted instruction. Engineering Design Graphics Journal, 55(2), 25-33.
    Mcfarlane, M. (1925). A study of practical ability. British Journal of Psychology, Monograph Supplements, 3(8).
    McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.
    McGee, M. G. (1979). Human spatial abilities: Sources of sex differences. New York: Praeger.
    McGuire, J. G. (1946). Relationship of engineering drawing courses. Journal of Engineering Drawing, 10(2), 27-29.
    McKim, R. H. (1972). Experiences in visual reasoning. Monterey, CA: Brooks/Cole Publishing Company.
    McKim, R. H. (1980). Experiences in visual thinking. Belmont, CA: Wadsworth.
    McMillan, J. H. (2004). Educational research – Fundamentals for the consumer (4th ed.). Pearson Education, Inc.
    Merriam, S. B. (1998). Qualitative research and case study applications in education (2nd ed.). San Francisco, CA: Jossey-Bass Publishers.
    Mervis, C. B., Robinson, B. F., & Pani, J. R. (1999). Visuospatial construction. American Journal of Human Genetics, 65, 1222-1229.
    Michael, W. B., Guilford, J. P., Fruchter, B., & Zimmerman, W. S. (1957). The description of spatial-visualization abilities. Educational and Psychological Measurement, 17, 185-199.
    Miller, C. L., & Bertoline, G. R. (1991). Spatial visualization research and theories: Their importance in the development of an engineering and technical design graphics curriculum model. Engineering Design Graphics Journal, 55(3), 5-14.
    Miller, C. L. (1992a). Enhancing visual literacy of engineering students through the use of real and computer generated models. Engineering Design Graphics Journal, 56(1), 27-38.
    Miller, C. L. (1992b). The results of integrating real and computer generated models into a traditional sketching based engineering graphics course. Engineering Design Graphics Journal, 56(2), 27-47.
    Miller, C. L. (1996). A historical review of applied and theoretical spatial visualization publications in engineering graphics. Engineering Design Graphics Journal, 60(3), 12-33.
    Minichiello V., Aroni R., Timewell E. & Alexander L. (1995). In-depth Interviewing (2nd ed.). South Melbourne: Longman.
    Murphy, L. W. (1936). The relations between mechanical ability tests and verbal and non-verbal intelligence tests. The Journal of Psychology, 2, 353-366.
    Myers, C. T. (1958). Some observations on problem-solving in spatial relations tests. Research Bulletin, RB-58-16. New Jersey: Educational Testing Service.
    National Research Council. (2006). Learning to Think Spatially. National Research Council, Washington, D.C.: The National Academies Press.
    Neisser, U. (1967). Cognitive Psychology. Englewood Cliffs, NJ: Prentice-Hall.
    Neimark, E. D., & Santa, J. L. (1975). Thinking and concept attainment. Annual Review of Psychology, 26, 173-205.
    Newcomer, J. L., Raudebaugh, R. A., McKell, E. K., & Kelley, D. S. (1999). Visualization, freehand drawing, solid modeling, and design in introductory engineering graphics. Proceedings of the 29th ASEE/IEEE Frontiers in Education Conference, San Juan, Puerto Rico. Retrieved May 12, 2007, from http://fie.engrng.pitt.edu/fie99/papers/1006.pdf
    Newcombe, N., Bandura, M., & Taylor, D. (1983). Sex differences in spatial ability and spatial activities. Sex Roles, 9, 377-386.
    Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge, MA: The MIT Press.
    Newlin, C. W. (1979). The total concept of graphics and design in the engineering curriculum. Engineering Design Graphics Journal, 43(2), 21-22.
    Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231-259.
    Nordvik, H., & Amponsah, B. (1998). Gender differences in spatial abilities and spatial ability among university students in an egalitarian educational system. Sex Roles: A Journal of Research, June, 1998. Retrieved June 6, 2007, from http://findarticles.com/p/articles/mi_m2294/is_n11-12_v38/ai_21109782
    Norman, K. L. (1994). Spatial visualization - a gateway to computer-based technology. Journal of Special Educational Technology, 12, 195–206.
    O'Connor, J. (1943). Structural visualization. Human Engineering Laboratory, Boston.
    Olkun S. (2003). Making connections: Improving spatial abilities with engineering drawing activities [Electronic version]. International Journal of Mathematics Teaching and Learning. Retrieved May 11, 2007, from http://www.cimt.plymouth.ac.uk/journal/sinanolkun.pdf
    Olshausen, B. A. (1988). A survey of visual preprocessing and shape representation techniques. RIACS Technical Report 88.35, NASA Ames Research Center.
    Onyancha, R., & Kinsey, B. (2007). The effect of engineering major on spatial ability improvements over the course of undergraduate studies. Proceedings of 37th ASEE/IEEE Frontiers in Education Conference. Retrieved May 11, 2007, from: http://fie.engrng.pitt.edu/fie2007/papers/1253.pdf
    Orr, J. N. (1995). Introducing solid modeling. In Donald E. Lacourse (Ed.), Handbook of Solid Modeling (pp. 2.1-2.8). McGraw-Hill.
    Orth, H. D. (1941). Establishing and maintaining standards of excellence in drawing. Journal of Engineering Drawing, 5(1), 7-10.
    Pak, R., Rogers, W. A., & Fisk, A. D. (2006). Spatial ability subfactors and their influences on a computer-based information search task. The Journal of the Human Factors and Ergonomics Society, 48(1), 154-165.
    Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching. 21, 507-516.
    Palmer, S. E. (1977). Hierarchical structure in perceptual representations. Cognitive Psychology, 9, 441-447.
    Panaoura, G., Gagatsis, A., & Lemonides, C. (2007). Spatial abilities in relation to performance in geometry tasks. Proceedings of 5th CERME (Conference of European Society for Research in Mathematics Education). Retrieved May 6, 2007, from http://www.cyprusisland.com/cerme/group7.htm
    Pani, J. R. (1994). The generalized cone in human spatial organization. Spatial Vision, 8(4), 491-501.
    Pani, J. R., Jeffres, J. A., Shippey, G., & Schwartz, K. (1996). Imagining projective transformations: Aligned orientations in spatial organization. Cognitive Psychology, 31, 125–167.
    Pani, J. R., Zhou, H., & Friend, S. M. (1997). Perceiving and imagining Plato’s solids: The generalized cylinder in spatial organization of 3D structures. Visual Cognition, 4, 225–264.
    Pani, J. R., Chariker, J. H., Dawson, T. E. & Johnson, N. (2005). Acquiring new spatial intuitions: Learning to reason about rotations. Cognitive Psychology, 51, 285–333.
    Pare, E. G., Loving, R. O., Hill, I. L., & Pare, R. C. (1987). Descriptive geometry (8th ed.). New York: MacMillan.
    Patton, M (1990) Qualitative evaluation and research methods, Newbury Park, California: Sage Publications.
    Pellegrino, J. W., Alderton, D. L., & Shute, V. J. (1984). Understanding spatial ability. Educational Psychologist, 19, 239-253.
    Piaget, J., & Inhelder, B. (1967). The child's conception of space. New York: Norton.
    Piaget, J., & Inhelder, B. (1971). The child's conception of space. (F. J. Langdon & J. L. Lunzer, Trans.). London : Routledge and Kegan Paul Ltd.
    Pleck, M. (1991). Visual literacy – An important aspect of engineering eesign. Proceedings of the 1991 ASEE Annual Conference, 1732-1734.
    Ponce, J. & D. Chelberg (1987). Localized intersections computation for solid modelling with straight homogeneous generalized cylinders, in Proc. Image Understanding Workshop, pp. 933-941.
    Potter, C., & van der Merwe, E. (2001). Spatial ability, visual Imagery and academic performance in engineering graphics. Proceeding of International Conference on Engineering Education. Retrieved May 16, 2007, from http://www.ineer.org/Events/ICEE2001/Proceedings/papers/498.pdf
    Potter, C., & Van der Merwe, E. (2003). Perception, imagery, visualization and engineering graphics. European journal of engineering education, 28(1), 117-133.
    Potter, O. W. (1948). Report of the meeting of engineering drawing division. Journal of Engineering Drawing, 12(3), 5, 34.
    Pressley, M., & Afflerbach, P. (1995). Verbal protocols of reading: The nature of constructively responsive reading. Hillsdale, NJ: Erlbaum.
    Pribyl, J. R., & Bodner, G.M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24, 229-240.
    Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80(1), 1-24.
    Radford, S. S. (1950). Appreciation of engineering drawing as a basic academic study. Journal of Engineering Drawing, 14(3), 10-11, 17, 27, 31.
    Rahim, M. H., Sawada, D., & Strasser, J. (1996). Exploring shape transforms through cut and cover: the boy with the ruler. The Mathematics Teaching Journal, 154, 23-29.
    Rahim, M. H. (2001). New research findings, ideas, and techniques in teaching and learning mathematics. Proceedings of the International Conference of New Ideas in Mathematics Education, 217-222. August 19-24, Australia.
    Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cog. Sci. 21, 1-29.
    Rhoades, H. M. (1981). Training spatial ability. In E. Klinger (Ed.), Imagery, Volume 2, Concepts, Results, and Applications (pp.247-256). New York: Prenum Press.
    Rhodes, L., & Nathenson-Mejia, S. (1992). Anecdotal records: A powerful tool for ongoing literacy assessment. The Reading Teacher, 45, 502-509.
    Richards, L. G. (1995). Incorporating 3D modeling and visualization in the first year engineering curriculum Full text. Proceedings of the 25th Annual Conference of Frontiers in Education. Retrieved May 15, 2007, from http://portal.acm.org/citation.cfm?id=1253523.1253639&coll=&dl=ACM&CFID=35113717&CFTOKEN=19663576
    Richardson, A. (1969). Mental Imagery. London: Routledge & Kegan Paul.
    Rising, J. S. (1948). Integration of engineering drawing and descriptive geometry. Journal of Engineering Drawing, 12(3), 16-17, 30.
    Rizzo, A. A., Buckwalter, J. G., Neumann, U., Kesselman, C., Thiebaux, M., Larson, P., & Van Rooyen, A. (1998). The virtual reality mental rotation spatial skills project. CyberPsychology and Behavior, 1, 113-120.
    Roberts, L. G. (1965). Machine perception of three-dimensional solids. In J. T. Tippett, et al. (Eds.), Optical and Electro-Optical Information Processing (pp. 159-197). Cambridge, MA: MIT Press.
    Robichaux, R. (2002). Predictors of spatial visualization: Structural equations modeling test of background variables [Electronic version]. Journal of Integrative Psychology, 2(3). Retrieved May 10, 2007, from http://www.integrativepsychology.org/articles/vol2_article3.htm
    Rodriguez, W. E. (1990). A dual approach to engineering design visualization. Engineering Design Graphics Journal, 54(3), 36-44.
    Rodriguez, W. E. (1995). Principles of design and communication. Engineering Design Graphics Journal, 59(2), 13-24.
    Rodriguez, W. E., & Opdenbosch, A. (1995). Design-implementation-based simulation: A graphics tool. Engineering Design Graphics Journal, 59(1), 18-26.
    Roorda, J. (1994). Visual perception, spatial visualization and engineering drawing. Engineering Design Graphics Journal, 58(2), 12-21.
    Roschelle, J., Pea, R., Hoadley, C., Gordin, D., & Means, B. (2001). Changing how and what children learn in school with computer-based technologies. The Future of Children, 10(2), 76-101.
    Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. Cyber Psychology & Behavior, 8(3), 263-271.
    Ross, W. A. (1986). Visualization: can 2-D microcomputer CADD do a 3-D job in introductory engineering graphics courses? Engineering Design Graphics Journal, 50(2), 37-39.
    Ross, W. A., & Aukstakalnis, S. (1993). Virtual reality: implications for research in engineering graphics. Engineering Design Graphics Journal, 57(2), 5-12.
    Rowe, C. E. (1938). Methods and teaching of descriptive geometry. Journal of Engineering Drawing, 2(1), 1-3.
    Rowe, C. E. (1940). Progress in the teaching of descriptive geometry. Journal of Engineering Drawing, 4(1), 13-14.
    Rowe, C. E. (1945). Basic models as an effective aid in teaching descriptive geometry. Journal of Engineering Drawing, 9(1), 7-9, 28.
    Saccuzzo, D. P., Craig, A. S., Johnson, N. E., & Larson, G. E. (1996). Gender differences in dynamic spatial abilities. Personality and Individual Differences, 21, 599-607.
    Salkind, N. J. (1976). A cross-dimensional study of spatial visualization in young children. Journal of Genetic Psychology, 129(2), 339-340.
    Salthouse, T. A., Babcock, R. L., Mitchell, D. R., Skovronek, E., & Palmon, R. (1990). Age and experience effects in spatial visualization. Developmental Psychology, 26, 128-136.
    Schoonmaker, S. J. (2003). The CAD guidebook: A basic manual for understanding and improvement Computer-Aided Design. New York: Marcel Dekker, Inc.
    Schyns, P. G., Goldstone, R. L., & Thibaut, J. (1998). The development of features in object concepts. Behavioral and Brain Sciences, 21, 1-54.
    Scribner S. A., & Anderson, M. A. (2005). Novice drafters' spatial visualization development: Influence of instructional methods and individual learning styles. Journal of Industrial Teacher Education, 42(2), 38-60.
    Seagull, F. J., & Walker, N. (1992). The effects of hierarchical structure and visualization ability on computerized information retrieval. International Journal of Human-Computer Interaction, 4, 369–385.
    Sebrechts, M. M., Deck, J. G., Wagner, R. K., & Black, J. B. (1984). How human abilities affect component skills in word processing. Behavior Research Methods, Instruments & Computers, 16, 234–237.
    Seddon, G. M., Eniaiyeju, P. A., & Jusoh, J. (1984). The visualization of rotation of diagrams of three dimensional structures. American Educational Research Journal, 2, 25-38.
    Sexton, T. J. (1992). Effect on spatial visualization: Introducing basic engineering graphics concepts using 3D CAD technology. Engineering Design Graphics Journal, 56(3), 36-43.
    Shahan, J. C., & Jenison, R. D. (1989). Visualization in graphics: Time for a change? Engineering Design Graphics Journal, 53(3), 28-38.
    Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171,701-703.
    Sherman, J. A. (1967). Problem of sex differences in space perception and aspects of intellectual functioning. Psychological Review, 74(4), 290-299.
    Sherman, J. (1978). Sex-related cognitive differences: An essay on theory and evidence. Springfield, IL: Charles C. Thomas.
    Sherman, J. (1980). Related factors: Changes in girls and boys, grades 8-11.Journal of Educational Psychology, 72(4), 467-482.
    Shieh, S. J. (2003). Research on improvement of learning achievement and spatial ability of vocational school students in graphics contributed by studies of 3D computer drafting. Unpublished thesis, National Changhua University of Education.
    Siddiqi, K., & Kimia, B. B. (1995). Parts of visual form: computational aspects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 239-251.
    Siemonkowski, F., & MacKnight, F. (1971). Spatial cognition: Success prognosticator in college science courses. Journal of College Science Teaching, 1, 50-59.
    Simon, H. A., & Kaplan, C. A. (1989). Foundations of cognitive science. In Posner M. I. (Ed.), Foundations of Cognitive Science, Cambridge, MA: MIT Press.
    Singh, M., Seyranian, G. D., & Hoffman, D. D. (1999). Parsing silhouettes: The short-cut rule. Perception and Psychophysics, 61(4), 636-660.
    Singh, R., & Singh, A. R. (2003). Handedness and gender differences in spatial abilities. Anthropologist, 5 (2), 113-118.
    Sjölinder, M. (1998). Spatial cognition and environmental descriptions. Towards a framework for design and evaluation of navigation in electronic spaces (pp.61-72). Swedish Institute of Computer Science (SICS), Technical Report T98:01, Stockholm. Retrieved May 10, 2007, from http://www.sics.se/humle/projects/persona/web/persona.html
    Slater, P. (1940). Some group tests of spatial judgment or practical abil¬ity. Occupational Psychology, 14, 40-55.
    Smail, B. (1983). Spatial visualization skills and technical drafts education. Educational Research, 25, 230-231.
    Smith, G. G. (2001). Interaction evokes reflection: Learning efficiency in spatial visualization [Electronic version]. Interactive Multimedia Electronic Journal (IMEJ) of Computer-Enhanced Learning, 3(2). Retrieved May 12, 2007, from http://imej.wfu.edu/articles/2001/2/05/index.asp
    Smith, I. M. (1964). Spatial ability: Its educational and social significance. London: University of London Press.
    Smith, I. M., & Taylor, C.C. (1967). A factorial study of a hypothesis about the nature of spatial ability. Durham Research Review, 18, 149-165.
    Sommer, R. (1978) The mind's eye, imagery in everyday life. New York: Delta Book.
    Sorby, S. A. (1999). Spatial abilities and their relationship to computer aided design instruction. Proceedings of the 1999 ASEE Annual Conference & Exposition, Session 1438, June 20-23, Charlotte, North Carolina.
    Sorby, S. A., Leopold, C., & Gorska, R. (1999). Cross-cultural comparisons of gender differences in the spatial skills of engineering students. Journal of Women and Minorities in Science and Engineering, 5, 279–291.
    Sorby, S. A. (2000). Spatial abilities and their relationship to effective learning of 3-D solid modeling software. Engineering Design Graphics Journal, 64(3), 30-35.
    Sorby, S. A. (2001). A course in spatial visualization and its impact on the retention of female engineering students. Journal of Women and Minorities in Science and Engineering, 7(2), 153-172.
    Sorby, S. A. (2005). Assessment of a “New and Improved” course for the development of 3-D spatial skills. Engineering Design Graphics Journal, 69(3), 6-13.
    Sorby, S. A. (2006). Developing 3D Spatial Skills for K-12 Students. Engineering Design Graphics Journal, 70, 1-11.
    Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education. 13(1), 1-11.
    Sorby, S. A., & Baartmans B. G. (1996a). Improving the 3-D spatial visualization skills of women engineering students. 1996 ASEE Annual Conference Proceedings.
    Sorby, S. A., & Baartmans B. G. (1996b). A course for the development of 3-D spatial visualization skills. Engineering Design Graphics Journal, 60 (1), 13-20.
    Sorby, S. A., & Gorska, R. A. (1998). The effect of various courses and teaching methods on the improvement of spatial ability. Proceedings of the 8th International Conference on Engineering Design Graphics and Descriptive Geometry, 252-256. Austin, Texas.
    Sorby, S. A., Manner, K., & Baartmans, B. G. (1998). 3-D visualization for engineering graphics. Upper Saddle River, NJ: Prentice-Hall.
    Sorby, S. A., & Baartmans, B. G. (2000). The development and assessment of a course for enhancing the 3-D spatial visualization skills of first year engineering students. Journal of Engineering Education, 89(3), 301-307.
    Souvignier, E. (2001). Training räumlicher Fähigkeiten (Training spatial abilities). In K. J. Klauer (Ed.), Handbuch Kognitives Training (pp.239-319). Göttingen: Hogrefe.
    Spearman, C. (1904). "General intelligence" objectively determined and measured. American Journal of Psychology, 15, 201-293.
    Spearman, C. (1927). The abilities of man: Their nature and measurement. New York: MacMillan.
    Spelke, E. S., & Grace, A. D. (2007). Sex, math, and science. In Ceci, S. J. & Williams, W. M. (Eds.), Why aren't more women in science? Top researchers debate the evidence (pp.57-67). Washington, D.C.: American Psychological Association Publications.
    Spencer, H. C. (1947). So you have decided to be a drawing teacher? Journal of Engineering Drawing, 11(3), 5-6, 18-19.
    Stake, R. E. (1995). The art of case study research. Thousand Oaks/London/New Delhi: Sage Publications.
    Stebbins, R. A. (2001). Exploratory research in the social sciences: Exploratory research. Thousand Oaks, CA: Sage.
    Steed, M. (2001, November). 3-D visualization: Using 3-D software to represent curricular concepts. Learning & Leading with Technology, 29(3), 14-20.
    Stericker, A., & LeVesconte, S. (1982). Effect of brief training on sex-related differences in visual-spatial skill. Journal of Personality and Social Psychology, 43(5), 1018-1029.
    Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.
    Sternberg, R. J. (1988). The triarchic mind. New York: Viking.
    Sternberg, R. J. (2000). The concept of intelligence. In Sternberg, R. J. (Ed.), Handbook of Intelligence. New York: Cambridge University Press.
    Sternberg, R. J. (2001). Psychology: In search of the human mind. Fort Worth, TX: Harcourt College Publishers.
    Sternberg, R. J., Forsyth, G. B., Hedlund, J., Horvath, J., Snook, S., Williams, W. M., Wagner, R. K., & Grigorenko, E. L. (2000). Practical intelligence in everyday life. New York: Cambridge University Press.
    Stevens, K. A., & Brookes, A. (1988). The concave cusp as a determiner of figure-ground. Perception, 17, 35-42.
    Stiggins, R. J. (1987). Design and development of performance assessments. Educational Measurement: Issues and Practice, 6(3), 33-42.
    Strong, S., & Smith, R. (2001). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18(1), 1-13.
    Stumpf, H., & Eliot, J. (1999). A structural analysis of visual spatial ability in academically talented students. Learning and Individual Differences, 11, 137-151.
    Sudman, S., Bradburn, N. M. & Schwarz, N. (Eds.) (1996). Thinking about Answers: The Application of Cognitive Processes to Survey Methodology. San Francisco, CA: Jossey-Bass.
    Suwa, M., & Tversky, B. (1997). What do architects and students perceive in their design sketches?: A protocol analysis, Design Studies, 18(4), 385-403.
    Svensen, C. L. (1948). Drawing in engineering education. Journal of Engineering Drawing, 12(3), 6-7, 20-21.
    Tarr, M. J., & Bulthoff, H. H. (1995). Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1494-1505.
    Tarr, M. J. & Vuong, Q. C. (2002). Visual object recognition, In Pashler, H. & Yantis, S. (Eds.), Stevens' Handbook of Experimental Psychology, Volume 1, Sensation and Perception (3rd ed.). John Wiley and Sons.
    Tartre, L. A. (1990). Spatial skills, gender, and mathematics. In Fennema, E. & Leder, G. C. (Eds.), Mathematics and Gender. (pp. 27-59). New York: Columbia University.
    Tennyson, S., & Krueger, T. (2001). Classroom evaluation of a rapid prototyping system. Engineering Design Graphics Journal, 65(2), 21-29.
    Thompson, A. L., & Klatzky, R. L. (1978). Studies of visual synthesis: Integration of fragments into forms. Journal of Experimental Psychology: Human Perception and Performance, 4, 244-263.
    Thurstone, L. L. (1938). Primary mental abilities. Psychometric Monographs, 1.
    Thurstone, L. L. (1947). Multiple-factor analysis: A development and expansion of the ‘Vectors of the Mind’. Chicago, IL: University of Chicago Press.
    Thurstone, L. L. (1950). Some primary abilities in visual thinking. Psychometric Laboratory Research Report, 59. Chicago, IL: University of Chicago Press.
    Thurstone, L. L., & Thurstone, T. G. (1941). Factorial studies of intelligence. Chicago, IL: University of Chicago Press.
    Thurstone, L. L., & Thurstone, T. G. (1949). Examiner manual for the SRA primary mental abilities test (Form 10-14). Chicago: Science Research Associates.
    Tracy, D. M. (1987). Toys, spatial ability, and science and mathematics achievement: Are they related? Sex Roles, 17, 115–138.
    Tracy, D. M. (1990).Toy-playing behavior, sex-role orientation, spatial ability, and science achievement. Journal of Research in Science Teaching, 27(7), 637-649.
    Tversky, B., & Hemenway, K. (1984). Objects, parts and categories. Journal of Experimental Psychology, 113(2), 169-191.
    Tyler. L. E. (1965). The psychology of human differences (3rd ed.). New York: Appleton.
    Vandenberg, S.G. (1975). Sources of variance in performance of spatial tests. In J. S. Eliot and N. S. Salkind (Eds.), Children's spatial development. Springfield: Charles C. Thomas.
    Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotation: A group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599-604.
    Vanderwall, W. J. (1981). Increasing understanding and visualization abilities using three-dimensional models. Engineering Design Graphics Journal, 45(2), 72-73.
    Vanderwall, W. J. (1991). A comparative study on the effectiveness and influence of required supplemental video teaching upon students' grades, course completion, visualization proficiency, and course attitudes. Engineering Design Graphics Journal, 55(2), 10-16.
    Vecera, S. P, Behrmann, M., & Filapek, J. C. (2001). Attending to the parts of a single object: Part-based selection limitations. Perception and Pyschophics, 63(2), 308-321.
    Verstijnen, M., van Leeuwen, C., Goldschmidt, G., Hamel, R., & Hennessey, J. M. (1998). Creative discovery in imager and perception: Combining is relatively easy, restructuring takes a sketch. Acta Psychologica, 99(2), 177-200.
    Vicente, K. J., Hayes, B. C., & Williges, R. C. (1987). Assaying and isolating individual differences in searching a hierarchical files system. Human Factors, 29, 349–359.
    Vicente, K. J., & Williges, R. C. (1988). Accommodating individual differences in searching a hierarchical file system. International Journal of Man-Machine Studies, 29, 647–668.
    Vierck, C. J. (1958). Basic principles for the design of drawing courses to comply with the 1955 evaluation report. Journal of Engineering Drawing, 22(1), 18-20.
    Voyer, D., Voyer, S., & Bryden, M.P.(1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin 117, p.250-270.
    Waldron, M. B., & Lalitha, P. S. (1985). Multisensory learning and orthographic projection: A comparative study. Engineering Design Graphics Journal, 49(1), 30-35.
    Wanzel, K. R., Hamstra, S. J., Anastakis, D.J., Matsumoto E. D., & Cusimano M. D. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. Lancet, 359, 230-231.
    Warner, F. M. (1949). Development of students ability to think and analyze in space. Journal of Engineering Drawing, 13(1), 31, 35.
    Wattanawaha, N. (1977). Spatial ability, and sex differences in performance on spatial tasks. Unpublished master’s thesis, Monash University.
    Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychology Corporation, Harcourt Brace Jovanovich.
    Wellman, B. L. (1948). The logic of visualization. Journal of Engineering Drawing, 11(2), 15,17, 22 35.
    Werdelin, I. (1961). Geometrical ability and the space factors. Lund, Sweden: Gleerup.
    Westerman, S. J. (1997). Individual differences in the use of command line and menu computer interfaces. International Journal of Human-Computer Interaction, 9, 183–198.
    Wiebe, E. N. (1992). Scientific visualization: an experimental introductory graphics course for science and engineering students. Engineering Design Graphics Journal, 56(1), 39-44.
    Wiebe, E. (1993). Visualization of three dimensional form: A discussion of theoretical models of internal representation. The Engineering Design Graphics Journal, 57(1), 18-28.
    Wilson, J. R., DeFries, J. C., McClearn, G. E., Vandenberg, S. G., Johnson, R. C., & Rashad, M. N. (1975). Cognitive abilities: Use of family data as a control to assess sex and age differences in two ethnic groups. International Journal of Aging and Human Development, 6, 261-276.
    Wiesen, J. P. (2003). How to prepare for the mechanical aptitude and spatial relations tests. Hauppauge, NY: Barron’s Educational Series, Inc.
    Wiener, S. (2005). Military flight aptitude tests (6th ed.). Lawrenceville, NJ: Thomson Peterson’s.
    Wiley, S. E. (1989). Avocation the development of visual perception as a dominant goal of technical graphics curricula. Engineering Design Graphics Journal, 53(1), 1-11.
    Wiley, S. E. (1990). Computer graphics and the development of visual perception in engineering graphics curricula. Engineering Design Graphics Journal, 54(2), 39-43.
    Wiley, S. E. (1990). An hierarchy of visual learning. Engineering Design Graphics Journal, 54(3), 30-35.
    Williams, M. (1997). Social surveys: design to analysis. In T. May (Ed.), Social Research Issues, Methods and Process. Buckingham: Open University Press.
    Winkel, B. J. (1997). In plane view: An exercise in visualization. International Journal of Mathematics Education Science and Technology, 28(4), 599-607.
    Winston, P. A. (1975). Learning structural descriptions from examples. In P. Winston (Ed.), The psychology of computer vision, pp. 157-209. New York: McGraw-Hill.
    Worsencroft, R. R. (1955). The effect of training on the spatial visualizing ability of engineering students. Journal of Engineering Drawing, 19(1), 7-12.
    Worsencroft, R. R. (1957). Objectives of engineering drawing in engineering education. Journal of Engineering Drawing, 21(2), 32-34.
    Wright, V. E. (1995). Solid modeling concepts. In Donald E. Lacourse (Ed.), Handbook of solid modeling (pp. 3.3-3.14). McGraw-Hill.
    Wu, H. C. (2001). A study of the relationship between the performances of spatial ability and learning achievement of development drawing in the mechanical drawing of vocational high school student. Unpublished thesis, National Taiwan Normal University.
    Wu, W. R. (2004). A study of the relationship between the performances of spatial abilities and mathematics achievement of junior high school students. Unpublished thesis, National Taipei University of Education.
    Young, C. H. (1952). The descriptive geometry three-dimensional project the cooper union engineering school day session. Journal of Engineering Drawing, 16(2), 13, 15, 39.
    Zavotka, S. L. (1987). Three-dimensional computer animated graphics: A tool for spatial skill instruction. Education Communication and Technological Journal, 35(3), 133-144.
    Zimmerman, W. S. (1954). The influence of item complexity upon the factor composition of a spatial visualization test. Educational and Psychological Measurement, 14, 106-119.
    Zsombor-Murry, P. J. (1990). 2D and 3D CAD: Complements to visualization. Engineering Design Graphics Journal, 54(3), 17-29.

    無法下載圖示 本全文未授權公開
    QR CODE