研究生: |
王文奕 |
---|---|
論文名稱: |
鋯掺入極薄氧化釔高介電係數閘極介電層之效應 The Effect of Zirconium (Zr) Incorporation in Ultra-Thin Y2O3 High-k Gate Dielectrics |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 阮弼群 Juan, Pi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 高介電係數 、氧化釔 、鋯 、共鍍技術 、蕭基發射 |
英文關鍵詞: | High-k, Y2O3, Zr, co-sputtering technique, Schottky emission |
論文種類: | 學術論文 |
相關次數: | 點閱:530 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是將鋯加入氧化釔 (Y2O3+Zr)作為氧化層的高介電係數薄膜材料,並成功的製作出MOS電容器。由於氧化釔和其它高介電係數薄膜材料相比,釔很容易跟矽基板產生相互擴散的現象,而鋯本身不僅是高介電係數薄膜材料且鋯和矽之間,有良好的介面品質。並針對本實驗製作出來的MOS電容器的電性和物性做分析與探討。
本研究沉積薄膜的方式是使用射頻共濺鍍技術,在常溫且充滿氬氣的真空腔體,將高純度的氧化釔和鋯之靶材,依照不同的條件濺射沉積在矽基板上,形成一層厚度7奈米的氧化釔/鋯薄膜,之後在充滿氮氣的真空腔體中,分別執行550 ℃、700 ℃和850 ℃的快速熱退火 (RTA),接著鍍上氮化鋯/鈦/鋁,製成閘極電極。最後再利用電流-電壓 (I-V)、電容-電壓 (C-V)、原子力顯微鏡 (AFM)和X光繞射儀 (XRD)等,分析探討氧化釔/鋯薄膜的電性和物性。
研究結果顯示,氧化釔/鋯薄膜擁有良好的結晶溫度 (約850 ℃)、介電係數和低的閘極漏電流,在經過700 ℃的快速熱退火後,得到的相對介電係數為14.7,閘極漏電流方面,閘極注入電壓為-1 V時,漏電流大小約為10-5 ~ 10-6 A/cm2,基板注入電壓為1 V時,漏電流大小約在10-5 ~ 10-6 A/cm2,漏電流機制符合蕭基發射,其閘極和介電層間、介電層和矽基板之間的蕭基能障分別為1.15 eV及1.01 eV。
In this study the Y2O3 integrated with Zr was regarded as high-k dielectric material for oxide layer and the MOS capacitance was successfully fabricated. Compared with others high-k dielectric material, the Y2O3 has inter-diffusion phenomenon with silicon. However the Zr is not only a high-k dielectric material but also a good quality of interface with silicon. The electrical and physical characteristics of the MOS capacitances were analyzed and discussed in this study.
The high-k Y2O3 and Zr thin films (7 nm) were deposited by RF co-sputtering technique using highly pure Y2O3 and Zr as the sputtering targets in Ar ambient at room temperature, followed by RTA at 550, 700 or 850 ℃ in N2 ambient. ZrN/Ti/Al was then formed as the gate electrode. The electrical and physical properties of the capacitors were evaluated through I-V (current-voltage), C-V (capacitance-voltage), AFM, XRD.
The results revealed that the Y2O3 and Zr thin films have satisfactory crystallization temperature (about 850 ℃), dielectric constant (EOT=1.86), and gate leakage current. The relative dielectric constant of the Y2O3/ Zr film is 14.7 after 700 ℃ rapid thermal annealing. The gate leakage current is 10-5-10-6 or 10-5-10-6 A/cm2 at a gate bias of 1 or -1 V, respectively. Moreover, the Schottky barrier height at the gate/oxide interface or oxide/p-Si interface is about 1.15 or 1.01 eV, respectively.
[1] http://sound.zol.com.cn/2003/0123/54596.shtml.
[2] J. Bardeen and W. H. Brattrain, “The transistor, a semi-conductor triode”, Physical Review 74, pp. 230 (1948).
[3] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, New York (2007).
[4] 劉傳璽、陳進來,“半導體物理元件與製程-理論與實務”,五南文化出版社,2008年。
[5] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge of thermally oxidized silicon”, Journal of The Electrochemical Society 114, pp. 266 (1967).
[6] C. H. Choi, K. H. Oh, J. S. Goo, Z. Yu, and R. W. Dutton, “Direct tunneling current model for circuit simulation”, IEDM Technical Digest, pp. 735 (1999).
[7] F. C. Chiu, S. K. Fan, K. C. Tai, and J. Y. Lee, “Electrical characterization of tunnel insulator in metal insulator tunnel transistors fabricated by atomic force microscope”, Applied Physics Letters 87, pp. 243506-1 (2005).
[8] S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, and R. Liu, “High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors”, Journal of Applied Physics 102, pp. 073706-1 (2007).
[9] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, “Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics”, Applied Physics Letters 95, pp. 012103-1 (2009).
[10] W. F. Smith (劉品均、施佑蓉譯),“材料科學概論”,麥格羅希爾 (2005)。
[11] Y. Li, J. Zhu, H.Liu, and Z. Liu, “Fabrication and characterization of Zr-rich Zr-aluminate films for high-k gate dielectric applications”, Microelectronic Engineering 83, pp. 1905 (2006).
[12] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations”, Applied Physics Review 89, pp. 5243 (2001).
[13] P. W. Peacock and J. Robertson, “Behavior of hydrogen in high dielectric constant oxide gate insulators”, Applied Physics Letters 83, pp. 2025 (2003).
[14] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and A12O3 gate dielectrics with equivalent oxide thickness 5-10 Å”, Symposium on VLSI Technology Digest of Technical papers, pp. 16 (2000).
[15] J. Robertson, “High dielectric constant oxides”, The European Physical Journal Applied Physics 28, pp. 265 (2004).
[16] 鄭晃忠、劉傳璽,“新世代積體電路製程技術”,東華書局,2011年。
[17] M. T. Ta, D. Briand, Y. Guhel, J. Bernard, J. C. Pesant, and B. Boudart, “Growth and structural characterization of cerium oxide thin films realized on Si(111) substrates by on-axis r.f. magnetron sputtering”, Thin Solid Films 517, pp. 450 (2008).
[18] H. J. Quah, K. Y. Cheong, Z. Hassan, Z. Lockman, F. A. Jasni, and W. F. Lim, “Effects of postdeposition annealing in argon ambient on metallorganic decomposed CeO2 gate spin coated on silicon”, Journal of The Electrochemical Society 157, pp. H6 (2010).
[19] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å”, IEEE Electron Device Letters 21, pp. 341 (2000).
[20] H. J. Kim, J. H. Jun, and D. J. Choi, “A study on the characteristics of hydrated La2O3 thin films with different oxidation gases on the various annealing temperature”, Journal of Electroceramics 23, pp. 258 (2009).
[21] H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition”, Applied Physics Letters 82, pp. 106 (2003).
[22] J. M. Gaskell, A. C. Jones, H. C. Aspinall, S. Taylor, P. Taechakumput, P. R. Chalker, P. N. Heys, and R. Odedra, “Deposition of lanthanum zirconium oxide high-k films by liquid injection atomic layer deposition”, Applied Physics Letters 91, pp. 112912-1 (2007).
[23] W. J. Qi, R. Nieh, E. Dharmarajan, B. H. Lee, Y. Jeon, L. Kang, K. Onishi, and J. C. Lee, “Ultrathin zirconium silicate film with good thermal stability for alternativegate dielectric application”, Applied Physics Letters 77, pp. 1704 (2000).
[24] M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Chng, Z. Ye, and Z. S. Hu, “Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure”, Transactions of Nonferrous Metals Society of China 16, pp. s63 (2006).
[25] M. Spankova, I. Vavra, S. Chromik, S. Harasek, R. Luptak, J. Soltys, and K. Husekova, “Structural properties of Y2O3 thin films grown on Si(1 0 0) and Si(1 1 1) substrates”, Materials Science and Engineering B 116, pp. 30 (2005).
[26] F. Paumier and R. J. Gaboriaud, “Interfacial reactions in Y2O3 thin films deposited on Si(100) ”, Thin Solid Films 441, pp. 307 (2003).
[27] L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, “Metal-oxide-semiconductor devices with molecular beam epitaxy-grown Y2O3 on Ge”, Journal of Crystal Growth 311, pp. 2195 (2009).
[28] K. Matsunouchi, N. Komatsu, C. Kimura, H. Aoki, and T. Sugino, “Growth and properties of YAlO film synthesized by RF magnetron sputtering”, Applied Surface Science 255, pp. 5021 (2009).
[29] P. S. Das, G. K. Dalapati, D. Z. Chi, A. Biswas, and C. K. Maiti, “Characterization of Y2O3 gate dielectric on n-GaAs substrates”, Applied Surface Science 256, pp. 2245 (2010).
[30] C. H. Liu, P. C. Juan, C. P. Cheng, G. T. Lai, H. Lee, Y. K. Chen, Y. W. Liu, and C. W. Hsu, “Structural properties of ultra-thin Y2O3 gate dielectrics studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)”, IEEE International Nano Electronics Conference, pp. 1256 (2010).