研究生: |
彭兆宏 Peng, Jhao-Hong |
---|---|
論文名稱: |
哈里斯準則對淬火無序二維量子自旋系統的有效性 Validity of Harris criterion for two-dimensional quantum spin systems with quenched disorder |
指導教授: |
江府峻
Jiang, Fu-Jiun |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 41 |
英文關鍵詞: | quenched disorder, Harris criterion |
DOI URL: | http://doi.org/10.6345/NTNU202000095 |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Inspired by many evidence showing that the Harris criterion could be violated in quantum phase transitions, we study the second-order quantum phase transition of a spin-1/2 antiferromagnetic Heisenberg model with a specific quenched disorder. In particular, various strengths of randomness are considered in our investigation. The studied models will undergo quantum phase transitions by tuning the dimerized-couplings which are close related to the strength of randomness. In addition, the strength of the employed randomness is controlled by a parameter $p$ which is in the range from 0 to 1, where the clean model corresponds to $p=0$.
In this study, we use the stochastic series expansion with efficient loop-update to perform the large-scale quantum Monte Carlo simulation and compute certain physical observables of the model. The critical exponent of the correlation length is evaluated from the finite-size scaling analysis with the Binder ratios as the observables. In order to estimate the statistical uncertainties in a self-consistent way, we analyze the data in the Bayesian inference framework.
In the case of $p=0$, we find that the critical exponent of the correlation length $\nu$ is 0.702(9) which is in reasonably good agreement with the result of $\mathcal{O}(3)$ universality class, and doesn't fulfill the Harris inequality $\nu>2/d$, where $d$ is the spatial dimension and is 2 in this case. Remarkably, while we find that those $\nu$ of $p \le 0.8$ do not fulfill the Harris inequality $\nu > 2/d$, the $\nu$ associated with $p = 0.9$ satisfies such. This interesting phenomenon is not pointed out explicitly before in the literature.
[1] K. S. D. Beach, L. Wang, and A. W. Sandvik. Data collapse in the critical region using finite-size scaling with subleading corrections. arXiv e-prints, pages cond–mat/0505194, May 2005.
[2] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari. Critical behavior of the three-dimensional XY universality class. Phys. Rev.B, 63:214503,May 2001.
[3] J. Cardy. Scaling and Renormalization in Statistical Physics. Cambridge Lecture Notes in Physics. Cambridge University Press, 1996.
[4] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer. Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett., 57:2999–3002, Dec 1986.
[5] A. V. Chubukov, S. Sachdev, and J. Ye. Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. Phys. Rev. B, 49:11919–11961, May 1994.
[6] D. S. Fisher. Random antiferromagnetic quantum spin chains. Phys.Rev. B, 50:3799–3821, Aug 1994.
[7] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee: The MCMC Hammer. PASP, 125:306–312, 2013.
[8] A. B. Harris. Effect of random defects on the critical behaviour of Ising models. Journal of Physics C: Solid State Physics, 7(9):1671–1692, May 1974.
[9] C. Holm and W. Janke. Critical exponents of the classical three-dimensional Heisenberg model: A single-cluster Monte Carlo study. Phys. Rev. B, 48:936–950, Jul 1993.
[10] M. T. Kao, D. J. Tan, and F. J. Jiang. Quantum phase transitions of 2-d dimerized spin-1/2 Heisenberg models with spatial anisotropy. 2012.
[11] M. Kardar. Statistical Physics of Fields. Cambridge University Press, 2007.
[12] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi. Precision islands in the Ising and o(n ) models. Journal of High Energy Physics, 2016(8):36, Aug 2016.
[13] Y.-C. Lin, H. Rieger, N. Laflorencie, and F. Iglói. Strong-disorder renormalization group study of s =1/2heisenberg antiferromagnet layers and bilayers with bond randomness, site dilution, and dimer dilution. Phys. Rev. B, 74:024427, Jul 2006.
[14] Y.-P. Lin, Y.-J. Kao, P. Chen, and Y.-C. Lin. Griffiths singularities in the random quantum Ising antiferromagnet: A tree tensor network renormalization group study.Phys. Rev. B, 96:064427, Aug 2017.
[15] L. Liu, H. Shao, Y.-C. Lin, W. Guo, and A. W. Sandvik. Random-singlet phase in disordered two-dimensional quantum magnets. Phys. Rev. X, 8:041040, Dec 2018.
[16] N. Ma, A. W. Sandvik, and D.-X. Yao. Criticality and mott glass phase in a disordered two-dimensional quantum spin system. Phys. Rev. B, 90:104425, Sep 2014.
[17] J.-H. Peng, L. W. Huang, D. R. Tan, and F. J. Jiang. Validity of Harris criterion for two-dimensional quantum spin systems with quenched disorder. arXiv e-prints, page arXiv:1910.12705, Oct 2019.
[18] C. Pich, A. P. Young, H. Rieger, and N. Kawashima. Critical behavior and Griffiths-Mccoy singularities in the two-dimensional random quantum Ising ferromagnet. Phys. Rev. Lett., 81:5916–5919, Dec 1998.
[19] A. W. Sandvik. http://physics.bu.edu/sandvik/programs/ssebasic/ssebasic.html.
[20] A. W. Sandvik. Classical percolation transition in the diluted two-dimensional s =1/2 Heisenberg antiferromagnet. Phys. Rev. B, 66:024418, Jul 2002.
[21] A. W. Sandvik, A. Avella, and F. Mancini. Computational studies of quantum spin systems. 2010.
[22] O. F. Syljuåsen and A. W. Sandvik. Quantum Monte Carlo with directed loops. Phys.Rev. E, 66:046701, Oct 2002.
[23] S. Wenzel and W. Janke. Comprehensive quantum Monte Carlo study of the quantum critical points in planar dimerized/quadrumerized Heisenberg models. Phys. Rev. B, 79:014410, Jan 2009.
[24] D.-X. Yao, J. Gustafsson, E. W. Carlson, and A. W. Sandvik. Quantum phase transitions in disordered dimerized quantum spin models and the harris criterion. Phys.Rev. B, 82:172409, Nov 2010.