簡易檢索 / 詳目顯示

研究生: 韋峻文
Chun Wen Wei
論文名稱: 石墨烯與氧化石墨烯的製備與鑑定
Preparation and Characterization of Graphene and Graphene Oxide
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 77
中文關鍵詞: 石墨石墨烯氧化石墨烯碳複合材料
英文關鍵詞: Graphite, Graphene, Graphene oxide, Carbon composite material
論文種類: 學術論文
相關次數: 點閱:345下載:73
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分:
    我們利用X光光電子能譜與粉末X光繞射光譜觀察石墨材料在氧化製程中的變化,過錳酸鉀會破壞石墨結晶中的雙鍵而產生含氧的官能基,當使用超聲波震盪時,含氧官能基彼此會產生靜電斥力,而達到石墨結構層與層之間的分離。從XPS圖譜可以看出,碳的訊號會因為氧化造成導電度下降而往高能量飄移,氧化所造成的官能基變化也可以從碳的XPS圖譜得知。根據文獻,碳的訊號會由碳材料及3種鍵結在碳材料上的含氧官能基所貢獻,分別有不同的能量。而X光粉末繞射圖譜也可發現石墨(002)晶面的訊號會隨氧化時間而往低角度飄移。分析以上兩種光譜,我們可以知道碳材料的結構變化與氧化程度。
    由上述實驗所得到的結果,我們結合氧化時間為6小時、超聲波震盪1小時的兩道製程條件製備氧化石墨烯。並利用原子力顯微鏡等儀器做鑑定,證明我們所設計的製程條件可以製備出低層數、分散均勻(在水中)的氧化石墨烯。

    第二部分:
    我們進一步以有機修飾或是還原劑還原的方式改變氧化石墨烯的特性,並以儀器做鑑定。從各種鑑定結果我們發現,石墨烯氧化物的特性會因為官能基改變或是還原後而有不同的性質。

    Section 1:
    We studied the changes of graphite in the chemical oxidation process by XPS and XRD spectroscopy. The oxidant (KMnO4) will destroy the double bonds in the crystal structure of graphite to form oxygen containing functional groups. The chemical oxidation of graphite produced hydrophilic graphite oxide, which can be readily exfoliated as single layer graphene oxide sheet by ultrasonication in water. The result suggests that the formation of stable graphene oxide (GO) sheets should be attributed to electrostatic repulsion caused by oxygen containing groups. As shown in the XPS spectra, the C (1s) signal were high binding energy shifted that low electronic conductivity due to chemical oxidation to form an insulator. The change of functional groups caused by oxidation can be detected by XPS.
    Based on the reported conclusion, C (1s) XPS spectra of GO materials clearly indicates a considerable degree of oxidation with four components that correspond to carbon atoms in different functional groups. The XRD spectra show that graphite (002) signal will change with increase of oxidation time and shift to low diffraction degree. According to the results of XPS and XRD, the changes of structure or degree of oxidation information will be available.
    Based on the result of graphite oxidation process, we used 6 hour as reaction condition for graphene oxide production, and characterized by AFM, XPS, DLS, etc. These data suggest that the combined two-step process could be advantageous for production of GO.

    Section 2:
    The as-obtained GO were further modification and reduction to change the properties of GO, and characterized by AFM, DLS, FE-SEM, Raman, FT-IR, XRD, XPS, UV-vis. Those data show that the properties of GO will be changed by chemical reduction or functional modification.

    Abstract 5 Section 1: 5 Section 2: 6 摘要 7 第一部分: 7 第二部分: 7 Chapter 1 Introduction 10 1.1 Graphite 11 1.2 Graphene 14 1.2.1 Properties and Structure 14 1.2.2 Production of single layer graphene oxide (GO) 16 1.2.3 Facile production in large quantities 16 1.2.4 Wet chemical process 18 Chapter 2 Theories 19 2.1 Oxidation and exfoliation of graphite 19 2.2 Reduction of graphene oxide 21 Chapter 3 Experimental Section 23 3.1 Preparation of graphene oxide nanosheets (GO) 23 3.2 Modification of graphene oxide 26 3.3 Reduction of carbon materials 27 3.3.1 Chemical Reduction of exfoliated graphene oxide (GO) with hydrazine hydrate 27 3.3.2 Chemical Reduction of diisocyanate modified graphene oxide with hydrazine hydrate (rGOi) 27 3.4 Graphene oxide with varied reaction conditions 28 3.5 Characterization 28 3.5.1 X-ray photoelectron spectroscopy (XPS) 28 3.5.2 Powder X-ray diffraction (XRD) 29 3.5.3 Atomic force microscope (AFM) 29 3.5.4 Dynamic light scattering (DLS) spectroscopy 30 3.5.5 Field-emission scanning electron microscopy (FE-SEM) 30 3.5.6 Raman Spectroscopy 30 3.5.7 FT-IR 31 3.5.8 UV-vis Spectrum 31 Chapter 4 Results and Discussion 32 Section 1: The studies of graphite oxidation and the characterizations of graphene oxide 32 4.1 The XPS and XRD studies of graphite oxidation process 33 4.2 The Characterizations of graphene oxide (GO) 40 4.2.1 The XPS and XRD studies of GO 40 4.2.2 Morphology, size and height analysis of graphene oxide by AFM, DLS and FE-SEM 41 SEM images of carbon materials 45 4.2.3 Raman spectra of graphite and GO 46 4.2.4 The change of functional groups and studied by FT-IR 48 4.2.5 UV-vis absorption spectra of GO solution 49 Section 2: The studies of GO modification and reduction 50 4.3.1 The X-ray diffraction (XRD) spectra and X-ray photoelectron spectroscopy (XPS) studies of carbon materials 51 The XRD spectra 52 4.3.2 The AFM survey of GO, rGO, and GOi 54 4.3.3 SEM images of carbon materials 56 4.3.4 The Raman studies of carbon material 58 4.3.5 The change of functional groups and monitor by FT-IR spectroscopy 60 Different functional groups and solubility in varied solvents 62 Chapter 5 Conclusion 64 Reference 65 Supporting Information 68

    (1) Wissler, M. Journal of Power Sources 2006, 156, 142.
    (2) 石墨材料之開發利用袁澄波 石作珉, 陳汝翼 復漢出版社 1999.
    (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
    (4) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
    (5) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Letters 2008, 8, 902.
    (6) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Communications 2008, 146, 351.
    (7) Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Letters 2008, 8, 3498.
    (8) Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. Journal of Power Sources 2011, 196, 4873.
    (9) Geim, A. K.; Novoselov, K. S. Nat Mater 2007, 6, 183.
    (10) Wang, S.; Tang, L. A. l.; Bao, Q.; Lin, M.; Deng, S.; Goh, B. M.; Loh, K. P. Journal of the American Chemical Society 2009, 131, 16832.
    (11) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806.
    (12) Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339.
    (13) Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J. Nano Letters 2009, 9, 4479.
    (14) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Letters 2008, 9, 30.
    (15) Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Nano Letters 2009, 9, 4359.
    (16) Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J.-H. Nano Letters 2010, 10, 490.
    (17) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
    (18) Byun, S.-J.; Lim, H.; Shin, G.-Y.; Han, T.-H.; Oh, S. H.; Ahn, J.-H.; Choi, H. C.; Lee, T.-W. The Journal of Physical Chemistry Letters 2011, 2, 493.
    (19) Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Nature 2010, advance online publication.
    (20) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457, 706.
    (21) Brodie, B. C. Philos. Trans. R. Soc. 1859, 149, 249.
    (22) Staudenmaier L. Ber. Dtsch. Chem. Ges. 1898, 31.
    (23) Hudson, M. J.; Hunter-Fujita, F. R.; W. Peckett, J.; Smith, P. M. Journal of Materials Chemistry 1997, 7, 301.
    (24) Hofmann, U. F., A.; Csalan, E. Liebigs. Ann. Chem. 1934, 510, 1.
    (25) Ruess, G. Monatsh. Chem. 1947, 76, 381.
    (26) Sholtz, W. B., H. P. Z. Anorg. Allg. Chem. 1969, 369, 327.
    (27) Szabo, T. B., O.; Forgo, P.; Josepovits, K; Sanakis, Y.; Petridis, D.; Dekany, I. Chem. Mater. 2006, 18, 2740.
    (28) Lerf, A. H., H.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477.
    (29) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.
    (30) Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M. ACS Nano 2010, 4, 2059.
    (31) Gao, X.; Jang, J.; Nagase, S. The Journal of Physical Chemistry C 2009, 114, 832.
    (32) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.
    (33) Saner, B.; Okyay, F.; Yürüm, Y. Fuel 2010, 89, 1903.
    (34) Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J. Carbon 2009, 47, 1359.
    (35) Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342.
    (36) Zhang, D.-D.; Zu, S.-Z.; Han, B.-H. Carbon 2009, 47, 2993.
    (37) Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Progress in Polymer Science 2010, 35, 1350.
    (38) Lee, D. W.; Seo, J. W. The Journal of Physical Chemistry C 2011, null.
    (39) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat Nano 2008, 3, 101.
    (40) Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Chemistry of Materials 2009, 21, 3514.
    (41) Burress, J. W.; Gadipelli, S.; Ford, J.; Simmons, J. M.; Zhou, W.; Yildirim, T. Angewandte Chemie International Edition 2010, 49, 8902.
    (42) Si, Y.; Samulski, E. T. Chemistry of Materials 2008, 20, 6792.
    (43) Tuinstra, F. K., J. L. J. Chem. Phys. 1970, 53, 1126.
    (44) Ferrari, A. C.; Robertson, J. Physical Review B 2000, 61, 14095.
    (45) Kaniyoor, A.; Baby, T. T.; Ramaprabhu, S. Journal of Materials Chemistry 2010, 20, 8467.
    (46) Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. T. C. Journal of the American Chemical Society 2009, 131, 898.
    (47) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano Letters 2007, 8, 36.
    (48) Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Nano Letters 2007, 7, 238.
    (49) Srinivas, G.; Burress, J. W.; Ford, J.; Yildirim, T. Journal of Materials Chemistry 2011.

    下載圖示
    QR CODE