研究生: |
吳宇泰 Wu, Yu-Tai |
---|---|
論文名稱: |
踢擊移動物體:目標速度是否會影響跆拳道後踢表現? Kicking moving object: is target speed used in guiding Taekwondo back kick? |
指導教授: |
劉有德
Liu, Yeou-Teh |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 跆拳道 、後踢 、動作時間 、動作起始時間 、空間準確度 |
英文關鍵詞: | Taekwondo, Back kick, Movement Time, Movement Initiation, Spatial Accuracy |
DOI URL: | https://doi.org/10.6345/NTNU202202062 |
論文種類: | 學術論文 |
相關次數: | 點閱:140 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
跆拳道是一種技擊型運動,其以踢擊作為主要得分方式。後踢為跆拳道重要 的踢擊技術之一,由於後踢動作是以直線朝對手的身體或是頭部踢擊,因此常被 作為旋踢攻擊的反擊動作。在跆拳道比賽中,雙方選手會為了攻防而不停的移動 位置,有效的踢擊必須於準確的時間擊中移動目標,方能於比賽中獲取分數;然 而,目標物的移動速度是否會對踢擊動作時間和空間準確度產生影響?目的:本 研究針對不同速度目標物對跆拳道後踢的動作時間、動作起始時間和空間準確度 進行探討。方法:本研究招募十名優秀男性跆拳道選手參與實驗,實驗參與者須 對目標物進行後踢, 每位實驗參與者皆須對四種不同速度之目標物進行十次踢擊, 每次踢擊將會以每秒 300 幅之高速攝影機錄影,再使用 Kinovea 軟體擷取運動學 資料,以計算動作時間、時間誤差、目標空間準確度和角度空間準確度的數據。 統計分析將使用單因子重複量數變異數分析對不同速度之目標物的動作時間和時 間誤差進行檢測,而不同速度之目標物的目標空間準確度和角度空間準確度, 則用 皮爾森卡方進行獨立性檢驗,統計顯著值設為𝛼 = .05。結果:動作時間和時間誤 差在不同的目標速度下沒有顯著差異, 但目標空間準確度和角度空間準確度則與 不同目標速度有關連性,當目標的速度增加,目標空間準確度和角度空間準確度 會隨之下降。結論:目標的速度並不會影響跆拳道後踢動作時間和動作起始時間, 但卻與空間準確度有關聯性。
Taekwondo is a full contact sport where most points are scored through kicks. Back kicks are used for counter kicks of round house kick. To score points, the kick has to be accurate both spatially and temporally. However, during the Taekwondo fight, both athletes are constantly moving, making it a moving target to attack. How does the moving speed of the target affect the characteristics of the kicking movement? The purpose of the study was to investigate the effect of different speed of moving target on the movement time, movement initiation, and spatial accuracy of Taekwondo back kick. Ten elite Taekwondo male athletes were recruited for the experiment. The participants were asked to kick a stationary object (0 speed) and a moving object with 3 different speeds in a random order with 10 trials each. High-speed cameras with 300 fps and the Kinovia digitizing software was used for this experiment. The movement time (MT), temporal error (TE), target spatial accuracy (TSA) and spatial accuracy of the sand bag angle (ASA) of the back kicks were examined. The one-way repeated measure ANOVA was used for the speed conditions on MT and TE. Chi Square tests of independence were used for the 4-speed conditions in SA and 3-speed conditions in ASA. The 𝛼 level of significance was set at .05. The results showed that there was no significant effect of object speed in MT and TE. The Chi square results showed the significant associations between the different speed conditions in TSA and ASA. In conclusion, the speed of object did not influence the movement time and the movement initiation of the back kick. The spatial accuracy, however, had strong association with the target speed.
REFERENCES
Bairstow, P. J. (1987). Analysis of hand movement to moving targets. Human Movement Science, 6(3), 205-231
Brenner, E., & Smeets, J. B. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297-310.
Brenner, E., Smeets, J. B., & de Lussanet, M. H. (1998). Hitting moving targets continuous control of the acceleration of the hand on the basis of the target’s velocity. Experimental Brain Research, 122(4), 467-474.
Brenner, E., & Smeets, J. B. (2010). How well can people judge when something happened? Vision Research, 50(12), 1101-1108.
Brouwer, A. M., Brenner, E., & Smeets, J. B. (2002). Hitting moving objects: is target speed used in guiding the hand? Experimental Brain Research, 143(2), 198-211.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, New Jersey: ErkBaum
Daum, M. M., Huber, S., & Krist, H. (2007). Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults. Experimental Brain Research, 177(4), 483-492.
Falco, C., Alvarez, O., Castillo, I., Estevan, I., Martos, J., Mugarra, F., & Iradi, A. (2009). Influence of the distance in a roundhouse kick's execution time and impact force in Taekwondo. Journal of biomechanics, 42(3), 242-248.
Falco, C., Landeo, R., Menescardi, C., Bermejo, J. L., & Estevan, I. (2012). Match analysis in a university taekwondo championship. Advances in Physical Education, 2(01), 28.
Ferrie, E. (1989). Taekwondo: traditional art and modern sport. Crowood.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology, 47(6), 381. 27
Hsieh, T. Y. (2015). Entropy of speed and accuracy trade-off in space-time. The Pennsylvania
State University.
Jakubiak, N., & Saunders, D. H. (2008). The feasibility and efficacy of elastic resistance training for improving the velocity of the Olympic Taekwondo turning kick. The Journal of Strength & Conditioning Research, 22(4), 1194-1197.
Kazemi, M., Waalen, J., Morgan, C., & White, A. R. (2006). A profile of Olympic Taekwondo competitors. Journal of sports science & medicine, 5(CSSI), 114-121.
Kim, J., Yenuga, S. S., & Kwon, Y. (2008). The effect of target distance on trunk, pelvis, and kicking leg kinematics in Taekwondo round house kick. In ISBS-Conference Proceedings Archive (Vol. 1, No. 1).
Kim, Y. K., Kim, Y. H., & Im, S. J. (2011). Inter-joint coordination in producing kicking velocity of Taekwondo kicks. Journal of Sports Science & Medicine, 10(1), 31.
Koh, J. O., & Watkinson, E. J. (2002). Video analysis of blows to the head and face at the 1999 World Taekwondo Championships. Journal of Sports Medicine and Physical Fitness, 42(3), 348.
Lee, C. L., & Chen, A. H. (2008). The support leg and attack pattern relationship of back kick movement in taekwondo. In ISBS-Conference Proceedings Archive (Vol. 1, No. 1).
Lee, C. L., Chin, Y. F., & Liu, Y. (2008, March). Comparing the difference between front-leg and back-leg round-house kicks attacking movement abilities in taekwondo. In ISBS-Conference Proceedings Archive (Vol. 1, No. 1).
Lee, D. N., Young, D. S., Reddish, P. E., Lough, S., & Clayton, T. M. H. (1983). Visual timing in hitting an accelerating ball. The Quarterly Journal of Experimental Psychology, 35(2), 333-346.
Lee, S. K. (1983). Frequency analysis of the Taekwondo techniques used in a tournament. Journal of Taekwondo, 46, 122-130.
Li, F. X. (1996). Effect of Bali Mass and Bali Momentum in Interceptive Task. Studies in Ecological Psychology, 53.
28
Mason, A. H., & Carnahan, H. (1999). Target viewing time and velocity effects on prehension. Experimental Brain Research, 127(1), 83-94.
Park, Y. H., & Seabourne, T. (1997). Taekwondo techniques & tactics. Human Kinetics 1.
Plamondon, R., & Alimi, A. M. (1997). Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences, 20(02), 279-303.
Schmidt, R. A., Sherwood, D. E., Zelaznik, H. N., & Leikind, B. J. (1985). Speed-accuracy trade-offs in motor behavior: Theories of impulse variability. In Motor Behavior (pp. 79-123). Springer Berlin Heidelberg.
Tan, Y. L., & Krasilshchikov, O. (2015). Diversity of attacking actions in Malaysian junior and senior taekwondo players. International Journal of Performance Analysis in Sport, 15(3), 913-923
Tresilian, J. R. (1999). Visually timed action: time-out for ‘tau’?. Trends in Cognitive Sciences, 3(8), 301-310.
Tresilian, J.R., Oliver, J., & Carroll, T. (2003). Temporal precision of interceptive action: differential effects of target size and speed. Experimental Brain Research, 148(4), 425-438.
Tresilian, J. R., & Lonergan, A. (2002). Intercepting a moving target: effects of temporal precision constraints and movement amplitude. Experimental Brain Research, 142(2), 193-207.
van Donkelaar, P., & Lee, R. G. (1994). The role of vision and eye motion during reaching to intercept moving targets. Human Movement Science, 13(6), 765-783
van den Tillaar, R., & Ulvik, A. (2014). Influence of instruction on velocity and accuracy in soccer kicking of experienced soccer players. Journal of motor behavior, 46(5), 287-291.