研究生: |
張祐瑄 |
---|---|
論文名稱: |
閱讀理解能力與數學能力對小學六年級低成就學生在數學文字題解題表現之影響 |
指導教授: | 蘇宜芬 |
學位類別: |
碩士 Master |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 低成就學生 、閱讀理解能力 、數學能力 、朗讀流暢度 、數學文字題 |
英文關鍵詞: | low achiever, reading comprehension ability, mathematical ability, oral reading fluency, math word problem |
論文種類: | 學術論文 |
相關次數: | 點閱:286 下載:47 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為探討閱讀理解能力與數學能力對國小六年級低成就學生的數學文字題解題表現的影響。藉由放聲思考法及結構式晤談蒐集每一位學生在「朗讀流暢度」、「關鍵句型的理解」、「數學概念的理解」、「數學文字題列算式的表現」、及「算術能力」等五個變項之表現。其中,「朗讀流暢度」和「關鍵句型的理解」與閱讀理解能力有關,因此擬以此兩個變項瞭解閱讀理解能力對數學文字題解題表現的影響。「數學概念的理解」、「數學文字題列算式的表現」、「算術能力」與數學能力有關,因此擬以此三個變項瞭解數學能力對數學文字題解題表現的影響。研究對象為九十位國小六年級學生。研究者先以「中文年級認字量表」、「閱讀理解困難篩選測驗」和數學成就表現將學生分為數閱低組、數低組和數閱一般組,每組各三十人。最後,以獨立樣本單因子變異數分析與獨立樣本單因子共變數分析比較三組表現的差異。
研究結果如下:
一、數閱一般組:數閱一般組之所以能夠成功解題,主要是因為認字效能佳,也能夠理解數學文字題中的關鍵句型,在閱讀數學文字題時,能掌握數學概念,並根據數學概念列出正確的算式,並具有良好的算術能力運算正確的結果。
二、數閱低組:造成此組數學低成就的原因除了數學概念掌握度不佳之外,還有認字效能不佳,以及無法理解數學文字題中的關鍵句型,在閱讀數學文字題時,無法掌握數學概念,無法根據數學概念列出正確的算式,並且算術能力亦不足。
三、數低組:數低組在解數學文字題時,由於無法理解數學概念,即使學生能回答數學概念的定義,仍無法順利應用相關知識列出正確的算式。此外,數低組的學生除了數學概念的應用能力不佳之外,算術能力亦不足。
依據研究結果,本研究進一步提出對未來研究上的建議。
The purpose of this study is to investigate how reading comprehension and mathematical ability influence low achievers’ performance on math word problem solving. Participants were 90 six-graders (43 boys, 47girls) in elementary school. Children were divided into 3 achievement groups: children with low achievements in mathematics but not in reading (MLRN), children with low achievements in both mathematics and reading (MLRL), children with normal achievement in both mathematics and reading (MNRN).The primary dependent variables for this investigation were oral reading fluency (ORF), comprehension of key sentence pattern, comprehension of math concept, comprehension of arithmetic word problem and arithmetic abilities in solving arithmetic word problems. Finally, the data was analyzed by one-way ANOVA.
This article proposed three conclusions. First, when solving mathematic word patterns, MNRN students could read fluently and comprehend key sentence patterns correctly. They also could understand and apply math concept correctly to solve arithmetic word problems. Second, MLRN students could comprehend key sentence patterns as well as MNRN students, and they could answer definition of mathematic concepts in arithmetic word problems which sounded like they having knowledge of math concepts. However, when asking to explain equations they listed, their failures reveal that they could not do well to apply mathematic concepts to solve arithmetic word problems. In addition, their poor arithmetic ability would affect their rformance as well. Third, MLRL students could not figure out key sentence patterns, so they comprehended arithmetic word problems incorrectly. In addition, their poor performances in ORF could explain their poor comprehension of key sentence patterns. Furthermore, they could not understand math concept either, so they could not list correct equations to solve arithmetic word problems. In short, the poor performance of MLRL students on arithmetic word problems resulted from poor comprehension of key sentence patterns and math concepts, and poor arithmetic ability.
一、西文部分:
Allan, B. I. & Bernardo. (1999). Overcoming obstacles in understanding and solving word problem in mathematics. Education Psychology, 19, 149-163 .
Cardelle-elawer, M. (1992). Effects of teaching metacognitive skills to studentswith low mathematics Ability. Teaching & Teacher Education, 8, 109-121.
De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the Semantic Structure of Word Problems on Second Graders’ Eye Movements. Journal of Educational Psychology, 82(2), 259-365.
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory.Psychological Review, 102, 211-245.
Fuchs, L. S., & Fuchs, D. (2002). Mathematical problem-solving profiles of students with mathematics disabilities with and without comorbid reading difficulties. Journal of Learning Disabilities, 35, 563-573.
Geary, D. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities 37, 4-15.
Hegarty, R. E. M., and Carolyn, E. Green. (1992). Comprehension of Arithmetic Word Problems: Evidence From Student' Eye Fixations. Journal of Educational Psychology, 84(1).
Hegarty, R. E. M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: a comparison of successful and unsuccessful problem solvers. . Journal of Educational Psychology, 87(1).
Jenkins, J. R., Fuchs, L. S., van den Broek P., Espin. C., & Deno, S. L. (2003). Sources of individual differences in reading comprehension and reading fluency. Journal of Educational Psychology, 95(4), 719-729.
Jordan, N. C. & Hanich, L. B. (2000). Mathematical thinking in second-grade children with different froms of LD. Journal of Learning Disabilities, 33, 567-578.
Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Develpoment. 74, 834-850.
Kurdek, L. A., & Sinclair, R. J. (2001). Predicting reading and mathematics achievement in fourth-grade children from kindergarten readiness scores. Journal of educational Psychology, 93, 451-455.
Kintsch W., & Greeno G. J. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92(1), 109-129.
Laborde C. (1990). Language and mathematics. In P. Nesher & J.Kilpatrick (Eds.), Mathematics and Cognition (pp. 53-69). Cambridge: Cambridge University Press.
Lewis, A. B., & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79, 363-371.
Mayer, R. E. (1982). Memory for algebra story problems. Journal of Educational Psychology, 74(2).
Mayer, R. E. (1985). Mathematical ability. In R. J. Sternberg (Ed.), Human abilities: An information processing approach (pp. 127-150). New York: Freeman.
Mayer, R. E. (1987). Educational Psychology: A Cognitive Approach. Boston: Little, Brown and Company.
Mayer, R. E. (1992). Comprehension of Arithmetic Word Problems: Evidence From Students’ Eye Fixations. Journal of Educational Psychology, 84(1), 76-84.
Mayer, R. E. (2008). Learning mathematics. In Johnston W. J.(Eds.), Learning and Instruction.(2nd.), (pp. 152-205). New Jersey: Pearson.
Muth, K. D. (1991). Effects of cuing on middle-school students’ performance on arithmetic word problem containing extraneous information. Journal of Education Psychology, 83(1), 173-174.
Polya, G. (1945). How to Solve It. New York: Doubleday.
Powell, R. S., Fuchs, S. L., Fuchs, D. Cirino, T. P., & Fletcher, M. J (2009) Do word-problem features differentially affect problem difficulty as a function of students’ mathematics difficulty with and without reading difficult? Journal of Learning Disabilities, 42(2), 99-110.
Pikulski, J. J.,& Chard D. J. (2005). Fluency:Bridge between decoding and reading comprehension. International Reading Association,510-519.
Riley, M. S., Greeno, J. G., & Heller, J. I. (1983). Development of children’s problem-solving ability in arithmetic. In H. P. Ginsburg (Ed. ) The development of mathematical thinking. Orlando, F. L. : Academic.
Rittle – Johnson, B., Siegler, S. R., & Alibali, W. M. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346-362.
Schoenfeld, A. H. (1985). Mathematical Problem Solving. NY: Academic press.
Shinn, M. R., Good, R. H., Knutson, N., Tilly, W. D., & Collins, V. L. (1992). Curriculum-based measurement of oral reading fluency: A confirmatory analysis of its relations to reading. School Psychology Review, 21, 459-479.
Swanson, H. L., Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk at risk and not at risk for Serious Math difficulties. Journal of Educational Psychology, 96(3), 471-491.
Verachaffel, L., De Corte, E. & Vierstraete, H. (1999). Upper elementary school pupils’ difficulties in modeling and solving nonstandard additive word problems involving ordinal numbers. Journal for Research in Mathematics Education, 30, 265-285.
二、中文部分:
林清山(1991)。教育心理學:認知取向。台北市:遠流。
林清山、張景媛(1993)。國中生後設認知、動機信念與數學解題策略之關係研究。教育心理學報,26,53-74。
鄭昭明(1993)。認知心理學-理論與實踐。台北: 桂冠。
張景媛(1994)。國中生數學學習歷程統整模式之研究。教育心理學報,27,141-174。
鄭麗玉(1994)。認知心理學。台北市:五南。
李俐麗(1999)。探討從基模的層面評估國中小數學資優生的數學解題能力。國立台灣師範大學科學教育研究所未出版碩士論文。
黃秀霜(2001)。中文年級認字量表。台北:心裡出版社。
蔡啟禎(2001)。國小中年級資優生數學解題歷程分析。國立中山大學教育研究所未出版碩士論文。
陳明媚(2002)。國小聽覺障礙學生數學文字題解題歷程之研究。國立台灣師範大學特殊教育學所未出版碩士論文。
陳瓊瑜(2002)。國小三年級數學學習困難學生乘法應用問題解題歷程之研究。國立彰化師範大學特殊教育學系在職進修專班未出版碩士論文。
邱琬婷(2002)。國民中學數學低成就與國文低成就學生數學解題歷程與錯誤類型之分析。國立彰化師範大學特殊教育學系在職進修專班未出版碩士論文。
陳淑琳(2002)。國小二年級學童乘法文字題解題歷程之研究-以屏東市一所國小為例。國立屏東師範學院數理教育研究所未出版碩士論文。
林麗華(2003)。國小不同數學成就學生對數學文字題的閱讀理解能力之探討。國立台南大學特殊教育學所未出版碩士論文。
蔡久瑜(2003)。國二學習障礙和一般學生後設認知與數學解題表現之研究。國立彰化師範大學特殊教育研究所在職進修專班未出版碩士論文。
楊金城(2003)。國一學生解數學文字題解題歷程之分析研究。國立高雄師範大學數學所未出版碩士論文。
張國樑(2004)。國中生代數文字題之解題歷程分析研究。國立高雄師範大學數學所未出版碩士論文。
陳世杰(2005)。國小學童閱讀理解策略數學文字題閱讀理解、數學文字題解題表現之相關研究。國立高雄師範大學教育學所未出版碩士論文。
黃于真(2005)。國小四年級數學低成就學生除法解題歷程與補救教學之研究。國立高雄師範大學教育學所未出版碩士論文。
柯華葳、詹益綾(2006)。閱讀理解困難篩選測驗。行政院國家科學委員會特殊教育工作小組印行。
李玉琇、蔣文祁譯(2006)。認知心理學。臺北:雙葉。Sternberg, R. J. (2003). Cognitive Psychology.
陳佩盈(2008)。國中資源班身心障礙學生之文字題解題能力在動態評量的表現-以「正負數與數線」單元為例。國立台灣師範大學特殊教育學所未出版碩士論文。