簡易檢索 / 詳目顯示

研究生: 朱晏頤
論文名稱: 含十六族元素(硒、碲)與第八族(釕)金屬團簇化合物的合成與其反應探討及化性研究
指導教授: 謝明惠
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 金屬團簇化合物
論文種類: 學術論文
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1. Se-Ru-CO 化合物之合成

    將K2SeO3與Ru3(CO)12以原子比Se:Ru = 1:5的比例於MeOH下加熱反應,可得到化合物[SeRu5(CO)14]2-,若將原子比改為Se:Ru = 1:2,置於相同的反應條件下,可得到化合物[HSe2Ru4(CO)10]-;此外,若同樣以原子比為Se:Ru = 1:2,但在更高溫下反應則會得到更多核的化合物[Se4Ru6(CO)12]2-,因此可藉由調整起始物的比例及溫度,控制不同結構的化合物生成。

    2. [HSe2Ru4(CO)10]-和[SeRu5(CO)14]2-與CO及CO2反應

    化合物[HSe2Ru4(CO)10]-在MeOH下與CO加熱反應一段時間後,再外加Ru3(CO)12,可得到活化C-O鍵並伴隨CO嵌入的綠色化合物[{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2CMe)]3-;而化合物[SeRu5(CO)14]2-在MeOH下與CO2加熱反應,則會得到活化O-H鍵及CO2插入的另一個綠色化合物[{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2COMe)]3-。由此可見Se-Ru-CO的金屬團簇化合物具獨特的活化特性。

    3. E-Ru-CuX (E = Te,Se) 的電化學研究

    八面體的化合物[ERu5(CO)14]2- (E = Se、Te)與CuX (X = Cl,Br,I)在不同比例下反應,可以得到具有單銅蓋接[ERu5(CO)14CuX]2-及雙銅橋接[E2Ru4(CO)10(CuX)2]2-化合物,而此系列化合物在電化學上均具有氧化還原性質,DFT理論計算顯示此類化合物的HOMO主要貢獻在Ru原子及CuX,而LUMO則主要來自Ru原子的貢獻,與我們在電化學所偵測的氧化還原結果相符合。

    1. Synthsis of Se-Ru-CO Clusters

    When K2SeO3 was treated with 5/3 equiv of Ru3(CO)12 in methanol at 80 C, [SeRu5(CO)14]2- was obtained in good yields. If K2SeO3 was treated with 2/3 equiv of Ru3(CO)12 in methanol at 75 C, another octahedral cluster [HSe2Ru4(CO)10]- could be obtained. Further, if K2SeO3 was treated with 2/3 equiv of Ru3(CO)12 in methanol at higher temperature (> 100 C), the higher nuclearity cluster [Se4Ru6(CO)12]2- was formed.

    2. Reactions of [HSe2Ru4(CO)10]- and [SeRu5(CO)14]2- with CO or CO2 in MeOH

    The green cluster [{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2CMe)]3- was obtained from the reaction of [HSe2Ru4(CO)10]- with CO followed by the addition of Ru3(CO)12 in refluxing methanol. This reaction not only involved with the C-O bond activation of MeOH, but also accompanied with CO insertion. However, if [SeRu5(CO)14]2- was treated with CO2 in refluxing methanol for several hours, another green cluster [{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2COMe)]3- was formed. This reaction involved with CO2 insertion to the O-H bond of MeOH.
    3. Electrochemical measurements of complexes E-Ru-CuX (E = Se, Te, X = Cl, Br, I)

    A series of octahedral E-Ru-CuX cluster complexes, [SeRu5(CO)14CuX]2- and [E2Ru4(CO)10Cu2X2]2-, was produced from the reactions of [ERu5(CO)14]2- with CuX (X = Cl, Br, I), respectively. These clusters revealed rich oxidative and reductive properties by cyclic voltammetry measurements. In addition, the HOMOs of all these clusters were mostly localized around the Ru atoms and CuX, and the LUMOs were mostly localized around the Ru atoms. This environment is consistent with their electrochemical reduction or oxidation potentials.

    目錄 中文摘要……………………………………………………………………….......... І 英文摘要...................................................................................................................... III 1. 前言……………………………………………………………………......... 1 1.1 背景…………………………………………………………………............. 1 1.2 研究目標…………………………………………………..................……... 10 2 實驗………………………………………………………..................……... 11 2.1 合成………………………………………………………..................……... 11 2.1-1 [PPN][HSe2Ru4(CO)10] ([PPN][1])的合成…………………….................... 12 2.1-2 [PPh4]2[SeRu5(CO)14] ([PPh4]2[2])的合成……………………..................... 12 2.1-3 [PPN]2[Se2Ru4(CO)10] ([PPN]2[3])的合成……………………..................... 13 2.1-4 [PPh4]2[Se4Ru6(CO)10] ([PPh4]2[4])的合成…………………….................... 14 2.1-5 [PPN]2[Se2Ru4(CO)10] ([PPN]2[3])與CO的加壓反應…………………….. 15 2.1-6 [PPN][HSeRu3(CO)9] ([PPN][5])與KOH的反應……………………......... 15 2.1-7 [Et4N]3[{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2CMe)] ([Et4N]3[6])的合成........... 16 2.1-8 [Et4N]3[{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2COMe)]•0.5THF ([Et4N]3[7])的合成................................................................................................................ 17 2.1-9 [PPh4]2[SeRu5(CO)14CuCl] ([PPh4]2[8])的合成……………………............. 18 2.1-10 [PPh4]2[SeRu5(CO)14CuBr] ([PPh4]2[9])的合成……………………............ 18 2.1-11 [PPh4]2[SeRu5(CO)14CuI] ([PPh4]2[10])的合成……………………............. 19 2.1-12 [PPh4]2 [Se2Ru4(CO)10Cu2Cl2] ([PPh4]2[11])的合成.………………………. 20 2.1-13 [PPh4]2[Se2Ru4(CO)10Cu2Br2] ([PPh4]2[12])的合成……………………...... 20 2.1-14 [PPh4]2[Se2Ru4(CO)10Cu2I2] ([PPh4]2[13])的合成……………………......... 21 2.1-15 [PPh4]2[Se2Ru4(CO)10{CuRu4(CO)12}2] ([PPh4]2[14])的合成……………... 21 2.1-16 [PPh4]2[TeRu5(CO)14] ([PPh4]2[15]•CH2Cl2)的合成……………………..... 22 2.1-17 [PPh4]2[Te2Ru4(CO)10Cu2Cl2] ([PPh4]2[16])的合成………………….…….. 23 2.1-18 [PPh4]2[Te2Ru4(CO)10Cu2Br2] ([PPh4]2[17])的合成……………………...... 24 2.1-19 [PPh4]2[Te2Ru4(CO)102Cu2I2] ([PPh4]2[18])的合成…………........................ 24 2.1-20 {[PPh4]2[Te2Ru4(CO)10Cu4Br4]}∞({[PPh4]2[19]}¥)的合成………………... 25 2.1-21 [PPh4]2[4]、[PPh4]2[14]與{[PPh4]2[19]}¥的晶體結構解析……................... 26 2.2 電化學分析..................................................................................................... 27 2.3 理論計算......................................................................................................... 28 2.3-1 [HSe2Ru4(CO)10]- (1)的理論計算分析………….......................................... 30 2.3-2 [SeRu5(CO)14]2- (2)的理論計算分析…………............................................. 31 2.3-3 [Se2Ru4(CO)10]2- (3)的理論計算分析…………............................................ 32 2.3-4 [SeRu5(CO)14CuCl]2- (8)的理論計算分析……............................................. 33 2.3-5 [SeRu5(CO)14CuBr]2- (9)的理論計算分析………........................................ 34 2.3-6 [SeRu5(CO)14CuI]2- (10)的理論計算分析…................................................. 35 2.3-7 [Se2Ru4(CO)10Cu2Cl2]2- (11)的理論計算分析…………............................... 36 2.3-8 [Se2Ru4(CO)10Cu2Br2]2- (12)的理論計算分析.............................................. 37 2.3-9 [Se2Ru4(CO)10Cu2I2]2- (13)的理論計算分析………..................................... 38 2.3-10 [Te2Ru4(CO)10Cu2Cl2]2- (16)的理論計算分析…………............................... 39 2.3-11 [Te2Ru4(CO)10Cu2Br2]2- (17)的理論計算分析.............................................. 40 2.3-12 [Te2Ru4(CO)10Cu2I2]2- (18)的理論計算分析………..................................... 41 2.3-13 [E2Ru4(CO)10Cu2X2]2- (E = Se, Te; X = Cl, Br, I)的Fukui Functions、游離能及電子親和力的結果分析....................................................................... 42 3. 結果………………………………………………………………….……… 44 3.1 Se-Ru-CO 系統…………………………………………………………….. 44 3.1-1 [PPN][HSe2Ru4(CO)10] ([PPN][1])的合成…………………….................... 44 3.1-2 [PPh4]2[SeRu5(CO)14] ([PPh4]2[2])的合成……………………..................... 45 3.1-3 [PPN]2[Se2Ru4(CO)10] ([PPN]2[3])的合成與加壓反應…………................. 46 3.1-4 [PPh4]2[Se4Ru6(CO)10] ([PPh4]2[4])的合成…………………........................ 48 3.1-5 [Et4N]3[{HSe2Ru4(CO)10}2(Ru2(CO)4)(O2CR)] (R = Me (6), OMe (7))的合成..................................................................................................................... 50 3.1-6 [PPh4]2[SeRu5(CO)14] ([PPh4]2[2])與CuX (X = Cl, Br, I)的反應................. 54 3.1-7 [PPh4]2[SeRu5(CO)14] ([PPh4]2[2])與[Cu(CH3CN)4][BF4]的反應................ 57 3.2 Te-Ru-CO系統……………………………………………………………... 59 3.2-1 [PPh4]2[TeRu5(CO)14]•CH2Cl2 ([PPh4]2[15]•CH2Cl2)的合成..………..…..... 59 3.2-2 [PPh4]2[Te2Ru4(CO)10Cu2X2] (X = Cl (16), Br (17))的合成.......................... 59 3.2-3 [PPh4]2[Te2Ru4(CO)10Cu2I2] ([PPh4]2[18])的合成......................................... 60 3.2-4 {[PPh4]2[Te2Ru4(CO)10Cu4Br4]}∞ ({[PPh4]2[19]}¥)的合成........................... 61 3.3 晶體結構解析……………………………………………………….……… 63 3.3-1 [PPh4]2[Se4Ru6(CO)10] ([PPh4]2[4])的晶體解析………………………….... 63 3.3-2 [[PPh4]2[Se2Ru4(CO)10{CuRu4(CO)12}2] ([PPh4]2[14])的晶體解析……...... 65 3.3-3 {[PPh4]2[Te2Ru4(CO)10Cu4Br4]}∞ ({[PPh4]2[19]}¥)的晶體解析...………… 67 4. 討論…………………………………………………………………...…….. 69 4.1 Se-Ru-CO化合物的擴核反應…………………………............................... 69 4.1-1 [SeRu5(CO)14]2- (2)的合成…………………………………………............. 69 4.1-2 [HSe2Ru4(CO)10]- (1)、[Se2Ru4(CO)10]2- (3)及[HSeRu3(CO)9]- (5)的相關反應………………………………………………………………..................... 73 4.2 [HSe2Ru4(CO)10]- (1)與 [SeRu5(CO)14]2- (2)在MeOH下與CO及CO2的反應性探討....……………………………………………………................. 76 4.2-1 [HSe2Ru4(CO)10]- (1)與CO及CO2的反應………………........................... 76 4.2-2 [SeRu5(CO)14]2- (2)與CO及CO2的反應………………............................... 81 4.3 DFT理論計算與反應結果及電化學分析的探討......................................... 85 4.3-1 [HSe2Ru4(CO)10]- (1)、[SeRu5(CO)14]2- (2)及[Se2Ru4(CO)10]2- (3)的討論.... 85 4.3-2 [PPh4]2[SeRu5(CO)14CuX] (X = Cl (8), Br (9), I (10))的合成與分析........... 87 4.3-3 [PPh4]2[Se2Ru4(CO)10Cu2X2] (X = Cl (11), Br (12), I (13))的合成與分析... 92 4.3-4 [PPh4]2[Te2Ru4(CO)10Cu2X2] (X = Cl (16), Br (17), I (18))的合成與分析... 98 5. 結論………………………………………………………………...….......... 102 6. 參考資料………………………………………………………………...….. 104 7. 附圖目錄………………………………………………………………......... A-1 8 附表目錄………………………………………………………………......... B-1

    1. (a) Femoni, M. C.; Iapalucci, C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580. (b) Xiong, Y.; Washio, I.; Chen, J.; Sadilek, M.; Xia,Y. Angew. Chem., Int. Ed. 2007, 46, asap. (c) Vogel, W.; Kaghazchi, P.; Jacob, T.; Alonso-Vante, N. J. Phys. Chem. C 2007, 111, 3908. (d) Wolfe, R. L.; Murray, R. W. Anal. Chem. 2006, 78, 1167.
    2. Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G. Angew. Chem. Int. Ed. 2006, 45, 2886.
    3. Vincent, K. A.; Belsey, N. A.; Lubitz, W.; Armstrong, F. A. J. Am. Chem. Soc. 2006, 128, 7448.
    4. (a) Adams, R. D.; Captain, B.; Beddie, C.; Hall, M. B. J. Am. Chem. Soc. 2007, 129, 986. (b) Brayshaw, S. K.; Ingleson, M. J.; Green, J. C.; McIndoe, J. S.; Raithby, P. R.; Kociok-Köhn, G.; Weller, A. S. J. Am. Chem. Soc. 2006, 128, 6247.
    5. Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
    6. Shriver, D. F.; Kaesz, H. D.; Adams, R. D. The Chemistry of Metal Cluster Complexes; VCH: New York, 1990.
    7. (a) Nicholls, J. N. Polyhedron 1984, 3, 1307. (b) Knochenko, S. N.; Pushkarevsky, N. A.; Virovets, A. V.; Scheer, M. J. Chem. Soc., Dalton Trans. 2003, 581.
    8. Whitmire, K. H. J. Cluster Sci. 1991, 2, 231.
    9. (a) Curtis, M. D.; Druker, S. H. J. Am. Chem. Soc. 1997, 119, 1027. (b) Bianchini, C.; Jiménez, M. V.; Meli, A.; Moneti, S.; Patinec, V.; Vizza, F. Organometallics 1997, 16, 5696.
    10. Llusar, R.; Uriel, S. Eur. J. Inorg. Chem. 2003, 1271.
    11. Feliz, M.; Guillamón, E.; Llusar, R.; Vicent, C.; Stiriba, S. E.; Pérez-Prieto, J.; Barberis, M. Chem. Eur. J. 2006, 1486.
    12. Nombel, P.; Lugan, N.; Donnadieu, B.; Lavigne, G. Organometallics 1999, 18, 187.
    13. Takei, I.; Dohki, K.; Kobayashi, K.; Suzuki, T.; Hidai, M. Inorg. Chem. 2005, 44, 3768.
    14. Arif, A. M.; Bright, T. A.; Jones, R. A.; Nunn, C. M. J. Am. Chem. Soc. 1988, 110, 6894.
    15. Das, B. K.; Kanatzidis, M. G. Polyhedron. 1997, 16, 3061.
    16. (a) Draganjac, M.; Dhingra, S.; Huang, S.-P.; Kanatzidis, M. G. Inorg. Chem. 1990, 29, 590. (b) Roof, L. C.; Koils, J. W. Chem. Rev. 1993, 93, 1037.
    17. Mathur, P.; Ghosh, S.; Hossain, M. M.; Satyanarayana, C.V.V.; Rheingold, A. L.; Yap, G. P.A. J. Organomet.Chem., 1997, 538, 57.
    18. Rupp, E.; Nowak, F.; Fiechter, S.; Reck, G.; Eyert, V.; Nicolas, A.-V.; Tributsch, H. Eur. J. Inorg. Chem. 2001, 2489.
    19. Cauzzi, D.; Graiff, C.; Predieri, G.; Tiripicchio, A.; Vignali, C. J. Chem. Soc., Dalton Trans., 1999, 237.
    20. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
    21. 詹莉芬,國立台灣師範大學碩士論文,1997。
    22. 謝明惠、賴韻文,未發表之結果。
    23. Delgado, E.; Chi, Y.; Wang, W.; Hogarth, G.; Low, P. J.; Enright, G. D., Peng, S.-M.; Lee, G.-H.; Carty, A. J. Organometallics 1998, 17, 2936.
    24. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds, Wiley, New York, 1986.
    25. Simmons, M. G.; Merrill, C. L.; Wilson, L.; J., Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827.
    26. 林淑芬,國立台灣師範大學碩士論文,2001。
    27. Blessing, R. H. Acta Crystallogr. Sect. A. 1995, 51, 33.
    28. Sheldrick G. M., SHELXL97, University of Göttingen, Germany, 1997.
    29. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.
    30. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
    31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.04; Gaussian, Inc.: Wallingford, CT, 2004.
    32. Wiberg, K. B. Tetrahedron 1968, 24, 1083.
    33. (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    34. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
    35. (a) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. (b) Lin, Y.-l.; Lee, Y.-M.; Lim, C. J. Am. Chem. Soc. 2005, 127, 11336.
    36. Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.
    37. (a) Fukui, K. Theory of Orientation and Stereoselection; Springer-Verlag: Berlin, 1973; p 134. (b) Science 1982, 218, 747.
    38. Chattaraj, P. K. J. Phys. Chem. A 2001, 105, 511.
    39. 何莉芳,國立台灣師範大學碩士論文,2000。
    40. 繆佳曄,未發表之結果。
    41. Baistrocchi, P.; Cauzzi, D.; Lanfranchi, M.; Predieri, G.; Tiripicchio, A.; Camellini, M. T. Inorganica Chimica Acta 2003, 235, 173.
    42. Belletti, D.; Graiff, C.; Massera, C.; Minarelli, A.; Predieri, G.; Tiripicchio, A.; Acquotti, D. Inorg. Chem. 2003, 42, 8509.
    43. Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Suss, G. J. Chem. Soc., Dalton Trans. 1979, 1356.
    44. Layer, T. M.; Lewis, J.; Martima, A.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1992, 3411.
    45. Cauzzi, D.; Graiff, C.; Predieri, G.; Tiripicchio, A.; Vignali, C. J. Chem. Soc., Dalton Trans. 1999, 237.
    46. Thomas, C. M.; Georg, S.-F. Coord. Chem. Rev. 2003, 243, 125.
    47. Gautron, S.; Lassauque, N.; Berre, C. L.; Serp, P.; Azam, L.; Giordano, R.; Laurenczy, G.; Thiébaut, D.; Kalck P. Eur. J. Inorg. Chem. 2006, 1121.
    48. Aresta, M.; Dibenedetto, A.; Pastore C. Inorg. Chem. 2003, 42, 3256.
    49. Dibenedetto, A.; Aresta, M.; Giannoccaro, P.; Pastore, C.; Pápai, I.; Schubert G. Eur. J. Inorg. Chem. 2006, 908.
    50. (a) Cabeza, J. A.; del Río, I.; García-Álvarez, P.; Miguel, D. Organometallics 2005, 24, 665. (b) Adams, R. D.; Captain, B.; Smith, M. D. Angew. Chem., Int. Ed. 2006, 45, 1109.
    51. Gunale, A. S.; Jensen, M. P.; Phillips, D. A.; Stern, C. L.; Shriver D. F. Inorg. Chem. 1992, 31, 2622.
    52. Lin, Y.-l.; Lee, Y.-M.; Lim, C. J. Am. Chem. Soc. 2005, 127, 11336.

    無法下載圖示 本全文未授權公開
    QR CODE