簡易檢索 / 詳目顯示

研究生: 陳原本
CHEN, Yuan-Pen
論文名稱: 以專利挖掘、隨機森林與多屬性決策分析探勘自駕車技術
Patent Mining, Random Forest, and MCDM Techniques Based Explorations of Autonomous Vehicle Techniques
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 黃日鉦
Huang, Jih-Jeng
陳良駒
Chen, Liang-Chu
黃啟祐
Huang, Chi-Yo
口試日期: 2022/07/17
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 126
中文關鍵詞: 自動駕駛技術專利探勘多準則決策分析隱含狄利克雷分佈主題建模隨機森林決策實驗室分析法基於決策實驗室分析法之網路流程
英文關鍵詞: Autonomous Vehicle techniques, Patent exploration, Topic Modeling, Random Forest, Decision-Making Trial and Evaluation Laboratory(DEMATEL), DEMATEL-based analytic network process (DANP)
研究方法: 專利挖掘隨機森林多屬性決策分析法
DOI URL: http://doi.org/10.6345/NTNU202205658
論文種類: 學術論文
相關次數: 點閱:389下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽車產業將迎來具有顛覆性的變革,其中自動駕駛為主要趨勢。專利揭露新型技術之細節,為探索自動駕駛的技術發展,專利挖掘為最有效的方式。雖然多有學者專家探勘各種專利,但少有研究探索專利技術之影響關係,自駕車技術彼此之影響關係更少。因此,本文研究擬定義挖掘自駕車專利之分析架構,跨越此論文之缺口。
    首先,本研究依據美國專利資料庫中挖掘之自駕車專利,使用隱含狄利克雷分佈(Latent Dirichlet allocation,LDA)探勘主題,其次,對每一專利,導入隨機森林(Random Forest,RF)演算法,計算每一專利主題對應於其他主題的特徵重要性,之後,將特徵重要矩陣導入決策實驗室分析法(Decision Making Trial and Evaluation Laboratory,DEMATEL),作為初始影響矩陣。最後,以基於決策實驗室之網路流程法(DEMATEL based Analytic Network Process,DANP)推衍每一主題之權重。為探勘自駕車技術,本研究首先自美國專利局下載 26249 件與自駕車相關的專利,並以 LDA 法擷取 30 個主題後,透過群落分析,歸納九大類自動駕駛技術,並由隨機森林與 DANP 法,得知車輛控制系統為影響自動駕駛技術的最關鍵因素,其次為機器視覺與無線通訊,而道路與車輛安全是自駕車技術的基本要求。本分析結果能用來作為未來自駕車公司發展核心能耐的基礎。本研究透過驗證完善之分析架構,能成為傳統汽車公司或科技公司挖掘專利,訂定研發策略之依據。

    The automotive industry is facing disruptive changes, among which autonomous vehicle techniques are the main trend. Patents reveal the details of new techniques. To understand the development of autonomous vehicle techniques, exploring patent data would be an efficient way. Although many scholars and experts are exploring various patents, there are few studies to explore the influence relationship of patented technologies, and the influence relationship between autonomous vehicle techniques is even less. Therefore, this study intends to define an analysis framework for mining patents of autonomous vehicle techniques and cross the research gap.
    First, this study explores autonomous vehicle techniques according to the patent data retrieved from the database of the United States Patent and Trademark Office (USPTO) and extract the topic model via Latent Dirichlet allocation (LDA).Afterward, for every one patent, the Random Forest (RF) algorithm is adopted to derive the feature importance of every one patent versusother topics. The feature importance matrix will be transformed into the initial influence matrix of the Decision-Making Trial and Evaluation Laboratory (DEMATEL). After that, by using the DEMATEL-based analytic network process (DANP), the influence weight versus each topic can be derived.
    In order to explore the trajectory autonomous vehicle technologies, this study firstly downloaded 26,249 patents related to autonomous vehicle from the USPTO, and extracted 30 topics by LDA method. Then through the method of clustering and the confirmation of experts, this study obtained nine autonomous driving technologies. The research results demonstrate that the vehicle control system is the key factor affecting the development of autonomous vehicles, followed by machine vision and wireless technologies; Road & Vehicle Safety is the basic requirement for autonomous vehicles. The calculation results will be the basis for autonomous vehicle companies to develop core capabilities. A well-proven analysis framework can be used as a basis for autonomous vehicle companies to excavate patents and formulate research and development (R&D) strategies.

    Table of Content 摘要 i Abstract ii Table of Content iv List of Table vi List of Appendix vii List of Figure viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivations 4 1.3 Research Purposes 4 1.4 Research Framework 5 1.5 Research Process 6 1.6 Research Limitations 7 1.7 Thesis Structure 7 Chapter 2 Literature review 9 2.1 Autonomous Vehicle 9 2.2 Patent Mining 14 2.3 Topic Modeling and LDA 16 2.4 Application of Topic Modeling in Patent Analysis 18 Chapter 3 Research Methods 21 3.1 Text Mining, Topic Modeling and LDA 22 3.2 The RF Technique 24 3.3 DEMATEL 27 3.4 The DANP 28 Chapter 4 Empirical Study 31 4.1 Scraping and Pre-Processing of autonomous vehicle technique patent Data 32 4.2 Descriptive statistics of autonomous vehicle patent data 33 4.3 Using LDA Methods to Extraction Main Topics 49 4.4 Using Hierarchical Cluster Analysis to merge similar topics 50 4.5 Utilizing the RF Algorithm to Deduce Feature Importance 69 4.6 Deriving the Influence Relationships/Weights Using DEMATEL and DANP 70 4.7 Experts confirm findings from empirical studies 73 Chapter 5 Discussion 75 5.1 Theoretical Implications 75 5.2 Advance in Research Method 81 5.3 Limitations and Future Research Possibilities 82 Chapter 6 Conclusions 85 Reference 89 Appendix 107

    Reference
    Abbasi, I. A., & Shahid Khan, A. (2018). A review of vehicle to vehicle communication protocols for VANETs in the urban environment. Future Internet, 10(2), 14.
    Acheampong, R. A., & Cugurullo, F. (2019). Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 349-375.
    Adhikari, M., Hazra, A., Menon, V. G., Chaurasia, B. K., & Mumtaz, S. (2021). A Roadmap of Next-Generation Wireless Technology for 6G-Enabled Vehicular Networks. IEEE Internet of Things Magazine, 4(4), 79-85.
    Agarwal, S., Vora, A., Pandey, G., Williams, W., Kourous, H., & McBride, J. (2020). Ford multi-AV seasonal dataset. The International Journal of Robotics Research, 39(12), 1367-1376.
    Albino, V., Ardito, L., Dangelico, R. M., & Petruzzelli, A. M. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836-854.
    Alcacer, J., & Gittelman, M. (2006). Patent citations as a measure of knowledge flows: The influence of examiner citations. The Review of Economics and Statistics, 88(4), 774-779.
    Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.
    Ambrosino, A., Cedrini, M., Davis, J. B., Fiori, S., Guerzoni, M., & Nuccio, M. (2018). What topic modeling could reveal about the evolution of economics. Journal of Economic Methodology, 25(4), 329-348.
    Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-519.
    Axelrod, C. W. (2019). Autonomous vehicles meet inhospitable roadways. In 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT), 1-6.
    Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixao, T. M., & Mutz, F. (2021). Self-driving cars: A survey. Expert Systems with Applications, 165, 113816.
    Begizhonov, S., Buyvol, P., Makarova, I., Tsybunov, E., & Boyko, A. (2021). Increasing the Accuracy of the Electronic Control Units’ Adjustment in Modern Vehicles Parts to Ensure Their Reliability and Safety. In International Conference on Reliability and Statistics in Transportation and Communication, 302-310.
    Beresford, Colin (2021, March). Honda Legend Sedan with Level 3 Autonomy Available for Lease in Japan. Car and Driver. Retrieved September 19, 2020, from https://www.caranddriver.com/news/a35729591/honda-legend-level-3-autonomy-leases-japan/
    Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
    Biggi, G., & Stilgoe, J. (2021). Artificial intelligence in self-driving cars research and innovation: A scientometric and bibliometric analysis. SSRN 2021, 2021, 3829897.
    Bishop, R. (2020). Automated driving: Decades of research and development leading to today’s commercial systems. Handbook of Human Factors for Automated, Connected, and Intelligent Vehicles (pp. 23-54). BCR: CRC Press.
    Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003a). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003b). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3(1), 993-1022.
    BOSCH - STUTTGART AIRPORT SET TO WELCOME FULLY AUTOMATED AND DRIVERLESS PARKING. (2022, May) IoT Automotive News. Retrieved September 19, 2020, from https://iot-automotive.news/bosch-stuttgart-airport-set-to-welcome-fully-automated-and-driverless-parking/
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
    Burghardt, T. E., Mosböck, H., Pashkevich, A., & Fiolić, M. (2020). Horizontal road markings for human and machine vision. Transportation Research Procedia, 48, 3622-3633.
    Butt, F. A., Chattha, J. N., Ahmad, J., Zia, M. U., Rizwan, M., & Naqvi, I. H. (2022). On the Integration of Enabling Wireless Technologies and Sensor Fusion for Next-Generation Connected and Autonomous Vehicles. IEEE Access, 10, 14643-14668.
    Chae, B. K., & Park, E. O. (2018). Corporate social responsibility (CSR): A survey of topics and trends using Twitter data and topic modeling. Sustainability, 10(7), 2231.
    Chen, H., Zhang, G., Zhu, D., & Lu, J. (2017). Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119, 39-52.
    Cho, T.-S., & Shih, H.-Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008. Scientometrics, 89(3), 795-811.
    Choi, J. Y., Jeong, S., & Kim, K. (2015). A study on diffusion pattern of technology convergence: Patent analysis for Korea. Sustainability, 7(9), 11546-11569.
    Chowdhury, A., Karmakar, G., Kamruzzaman, J., & Islam, S. (2020). Trustworthiness of self-driving vehicles for intelligent transportation systems in industry applications. IEEE Transactions on Industrial Informatics, 17(2), 961-970.
    Clements, L. M., & Kockelman, K. M. (2017). Economic effects of automated vehicles. Transportation Research Record, 2606(1), 106-114.
    Coicheci, S., & Filip, I. (2020, May). Self-driving vehicles: current status of development and technical challenges to overcome. In 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI), 000255-000260.
    d'Orey, P. M., & Ferreira, M. (2013). ITS for sustainable mobility: A survey on applications and impact assessment tools. IEEE Transactions on Intelligent Transportation Systems, 15(2), 477-493.
    David Shepardson. (2021, February). GM seeks U.S approval to deploy self-driving vehicles. Reuters. Retrieved September 19, 2020, from https://www.reuters.com/business/autos-transportation/gm-seeks-us-approval-deploy-self-driving-vehicle-2022-02-18/
    De Battisti, F., Ferrara, A., & Salini, S. (2015). A decade of research in statistics: A topic model approach. Scientometrics, 103(2), 413-433.
    Demoulin, N. T., & Coussement, K. (2020). Acceptance of text-mining systems: The signaling role of information quality. Information & Management, 57(1), 103120.
    DiLuoffo, V., Michalson, W. R., & Sunar, B. (2018). Robot Operating System 2: The need for a holistic security approach to robotic architectures. International Journal of Advanced Robotic Systems, 15(3), 1729881418770011.
    El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future trends. Satellite Navigation, 2(1), 1-23.
    Elkholy, H. A., Azar, A. T., Shahin, A. S., Elsharkawy, O. I., & Ammar, H. H. (2020). Path Planning of a Self Driving Vehicle Using Artificial Intelligence Techniques and Machine Vision. The International Conference on Artificial Intelligence and Computer Vision, 532-542.
    Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
    Evtukov, S., Golov, E., & Sazonova, T. (2018). Prospects of scientific research in the field of active and passive safety of vehicles. MATEC Web of Conferences, (Vol. 239). EDP Sciences.
    Facts and Factors. (2021, September). Autonomous Cars Market Report 2021 -2026. Facts & Factors Research. Retrieved September 19, 2020, from https://www.fnfresearch.com/sample/autonomous-cars-market
    Farrell, J. (2016). Corporate funding and ideological polarization about climate change. Proceedings of the National Academy of Sciences, 113(1), 92-97.
    Fayyad, J., Jaradat, M. A., Gruyer, D., & Najjaran, H. (2020). Deep learning sensor fusion for autonomous vehicle perception and localization: A review. Sensors, 20(15), 4220.
    Feldman, R., & Dagan, I. (1995, August). Knowledge Discovery in Textual Databases (KDT). KDD, 95, 112-117.
    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland, 1-8.
    Garcia, M. H. C., Molina-Galan, A., Boban, M., Gozalvez, J., Coll-Perales, B., Şahin, T., & Kousaridas, A. (2021). A tutorial on 5G NR V2X communications. IEEE Communications Surveys & Tutorials, 23(3), 1972-2026.
    Gersten, J. D. M. (2005). The quest for market exclusivity in biotechnology: Navigating the patent minefield. NeuroRx, 2(4), 572-578.
    Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of Field Robotics, 37(3), 362-386.
    Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267-297.
    Groves, P. D. (2015). Principles of GNSS, inertial, and multisensor integrated navigation systems, IEEE Aerospace and Electronic Systems Magazine, 30(2), 26-27.
    Gupta, A., Anpalagan, A., Guan, L., & Khwaja, A. S. (2021). Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array, 10, 100057.
    Gurcan, F., & Cagiltay, N. E. (2019). Big data software engineering: Analysis of knowledge domains and skill sets using LDA-based topic modeling. IEEE Access, 7, 82541-82552.
    Hawkins, Andrew (2020, October). Waymo and Daimler are teaming up to build fully driverless semi trucks - A broad, global, strategic partnership. The Verge. Retrieved from https://www.theverge.com/2020/10/27/21536048/waymo-daimler-driverless-semi-trucks-cascadia-freightliner
    Hasirlioglu, S., Kamann, A., Doric, I., & Brandmeier, T. (2016, November). Test methodology for rain influence on automotive surround sensors. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2242-2247.
    Hecht, J. (2021). Where's my robot car? New Scientist, 251(3345), 45-49.
    Hossain, M. S., & Muhammad, G. (2016). Cloud-assisted industrial internet of things - enabled framework for health monitoring. Computer Networks, 101, 192-202.
    Hu, J., Bhowmick, P., Arvin, F., Lanzon, A., & Lennox, B. (2020). Cooperative control of heterogeneous connected vehicle platoons: An adaptive leader-following approach. IEEE Robotics and Automation Letters, 5(2), 977-984.
    Huang, C.-Y., Chung, P.-H., Shyu, J. Z., Ho, Y.-H., Wu, C.-H., Lee, M.-C., & Wu, M.-J. (2018). Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability, 10(10), 3451.
    Huang, C.-Y., Shyu, J. Z., & Tzeng, G.-H. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12), 744-765.
    Huang, C.-Y., & Tung, I. (2020). Strategies for heterogeneous r&d alliances of in vitro diagnostics firms in rapidly catching-up economies. International Journal of Environmental Research and Public Health, 17(10), 3688.
    Huang, C.-Y., Yang, C.-L., & Hsiao, Y.-H. (2021). A novel framework for mining social media data based on text mining, topic modeling, random forest, and DANP methods. Mathematics, 9(17), 2041.
    Ilas, C. (2013, May). Electronic sensing technologies for autonomous ground vehicles: A review. 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 1-6.
    Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577-598.
    Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211.
    Johnston, G., Riddell, A., & Hausler, G. (2017). The international GNSS service. In Springer Handbook of Global Navigation Satellite Systems, 967-982.
    Jonasson, M., & Thor, M. (2018). Steering redundancy for self-driving vehicles using differential braking. Vehicle System Dynamics, 56(5), 791-809.
    Jumaa, B. A., Abdulhassan, A. M., & Abdulhassan, A. M. (2019). Advanced driver assistance system (adas): A review of systems and technologies. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 8(6), 231-234.
    Jun, S. (2011). IPC code analysis of patent documents using association rules and maps–patent analysis of database technology. In Database Theory and Application, Bio-Science and Bio-Technology, 21-30.
    Karami, A., Lundy, M., Webb, F., & Dwivedi, Y. K. (2020). Twitter and research: a systematic literature review through text mining. IEEE Access, 8, 67698-67717.
    Khayyam, H., Javadi, B., Jalili, M., & Jazar, R. N. (2020). Artificial intelligence and internet of things for autonomous vehicles. In Nonlinear Approaches in Engineering Applications, 39-68.
    Kong, L., Khan, M. K., Wu, F., Chen, G., & Zeng, P. (2017). Millimeter-wave wireless communications for IoT-cloud supported autonomous vehicles: Overview, design, and challenges. IEEE Communications Magazine, 55(1), 62-68.
    Koopman, P., & Wagner, M. (2016). Challenges in autonomous vehicle testing and validation. SAE International Journal of Transportation Safety, 4(1), 15-24.
    KPMG - 2020 Autonomous Vehicles Readiness Index. (2020, June) KPMG International. Retrieved September 19, 2020, from https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html#download
    Krishna, K., Karumuri, N., Christopher, C., & Jayapandian, N. (2021). Research Challenges in Self-Driving Vehicle by Using Internet of Things (IoT). 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 423-427.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
    Kumar, K. V. R., Kumar, K. D., Poluru, R. K., Basha, S. M., & Reddy, M. P. K. (2020). Internet of things and fog computing applications in intelligent transportation systems. In Architecture and Security Issues in Fog Computing Applications, 131-150.
    Lüdering, J., & Winker, P. (2016). Forward or backward looking? The economic discourse and the observed reality. Jahrbücher Für Nationalökonomie Und Statistik, 236(4), 483-515.
    Lafond, F., & Kim, D. (2019). Long-run dynamics of the US patent classification system. Journal of Evolutionary Economics, 29(2), 631-664.
    Langheim, J. (2016). Energy consumption and autonomous driving. Proceedings of the 3rd CESA Automotive Electronics Congress. CESA Automotive Electronics Congress. NY: Springer.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
    Lee, M. (2020). An analysis of the effects of artificial intelligence on electric vehicle technology innovation using patent data. World Patent Information, 63, 102002.
    Lee, W. S., & Sohn, S. Y. (2017). Identifying emerging trends of financial business method patents. Sustainability, 9(9), 1670.
    Lei, X.-P., Zhao, Z.-Y., Zhang, X., Chen, D.-Z., Huang, M.-H., Zheng, J., Liu, R.-S., Zhang, J., & Zhao, Y.-H. (2013). Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis. Scientometrics, 96(2), 427-441.
    Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607-635.
    Liu, C.-H., Tzeng, G.-H., & Lee, M.-H. (2012). Improving tourism policy implementation – The use of hybrid MCDM models. Tourism Management, 33(2), 413-426.
    Liu, F., Shu, P., Jin, H., Ding, L., Yu, J., Niu, D., & Li, B. (2013). Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications. IEEE Wireless Communications, 20(3), 14-22.
    LLC, (2018, July). Baidu Joins Forces with Softbank's SB Drive, King Long to Bring Apollo-Powered Autonomous Buses to Japan. GlobeNewswire News Room. Retrieved September 19, 2020, from https://www.globenewswire.com/news-release/2018/07/04/1533217/0/en/Baidu-Joins-Forces-with-Softbank-s-SB-Drive-King-Long-to-Bring-Apollo-Powered-Autonomous-Buses-to-Japan.html
    Louppe, G., Wehenkel, L., Sutera, A., & Geurts, P. (2013). Understanding variable importances in forests of randomized trees. Advances in Neural Information Processing Systems, 26, 431-439.
    Ma, W. C., Tartavull, I., Bârsan, I. A., Wang, S., Bai, M., Mattyus, G., ... & Urtasun, R. (2019). Exploiting sparse semantic HD maps for self-driving vehicle localization. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5304-5311.
    Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., & Mohammadiha, N. (2019). Autonomous vehicles: state of the art, future trends, and challenges. Automotive Systems and Software Engineering, 347-367.
    Martin Placek. (2022, July). Size of the global autonomous car market in 2021, with a forecast through 2026. Statista 2022. Retrieved September 19, 2020, from https://www.statista.com/statistics/428692/projected-size-of-global-autonomous-vehicle-market-by-vehicle-type/
    Maruyama, Y., Kato, S., & Azumi, T. (2016). Exploring the performance of ROS2. Proceedings of the 13th International Conference on Embedded Software, 1-10.
    Meguro, K., & Osabe, Y. (2019). Lost in patent classification. World Patent Information, 57, 70-76.
    Michel, J., & Bettels, B. (2001). Patent citation analysis. A closer look at the basic input data from patent search reports. Scientometrics, 51(1), 185-201.
    Miner, G., Elder IV, J., Fast, A., Hill, T., Nisbet, R., & Delen, D. (2012). Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications. N.Y.: Academic Press.
    Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147-155.
    Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research Policy, 16(2-4), 143-155.
    Noguchi, N., Kise, M., Reid, J. F., & Zhang, Q. (2001). Autonomous Vehicle Based on GPS and Inertial Sensors. IFAC Proceedings Volumes, 34(11), 105-110.
    Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55.
    Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshynanyk, D., & De Lucia, A. (2013). How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms. 2013 35th International Conference on Software Engineering (ICSE), 522-531.
    Paul, M., & Dredze, M. (2011). You are what you tweet: Analyzing twitter for public health. Proceedings of the International AAAI Conference on Web and Social Media,5(1), 265-272.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
    Phillips-Wren, G., Jain, L. C., Nakamatsu, K., & Howlett, R. J. (2010). Advances in Intelligent Decision Technologies: Proceedings of the Second Kes International Symposium Idt 2010. Springer-Verlag. Retrieved September 19, 2020, from: http://www.google.com.tw/books?id=ej-vwATfbAYC
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: an open-source Robot Operating System. IEEE ICRA Workshop on Open Source Software, 3(2), 5.
    Ramsey, John. (2015, June). Self-driving cars to be tested on Virginia highways. Richmond Times-Dispatch. Retrieved September 19, 2020, from https://richmond.com/news/article_b1168b67-3b2b-5274-8914-8a3304f2e417.html
    Reke, M., Peter, D., Schulte-Tigges, J., Schiffer, S., Ferrein, A., Walter, T., & Matheis, D. (2020). A self-driving car architecture in ROS2. 2020 International SAUPEC/RobMech/PRASA Conference, 1-6.
    Saaty, T. L. (1996). Decision Making with Dependence and Feedback: The Analytic Network Process (Vol. 4922, No. 2). PA: RWS publications.
    SAE International (2016). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. PA: SAE International.

    Savin, I., & van den Bergh, J. (2021). Main topics in EIST during its first decade: A computational-linguistic analysis. Environmental Innovation and Societal Transitions, 41, 10-17.
    Seo Jin-woo; Jung You-jung; Lee Ha-yeon. (2022, February). Korean firms enhance car cybersecurity before Level 3 autonomous car releases. Pulse by Maeil Business Newspaper. Retrieved September 19, 2020, from https://pulsenews.co.kr/view.php?year=2022&no=147214
    Shahian Jahromi, B., Tulabandhula, T., & Cetin, S. (2019). Real-time hybrid multi-sensor fusion framework for perception in autonomous vehicles. Sensors, 19(20), 4357.
    Size, E. O. M. (2019). Share & Trends Analysis Report By Application (Cleaning & Home, Medical, Food & Beverages, Spa & Relaxation), By Product, By Sales Channel, and Segment Forecasts, 2019-2025. Report ID, 978-971.
    Skeels, A., & Cardillo, M. (2019). Reconstructing the geography of speciation from contemporary biodiversity data. The American Naturalist, 193(2), 240-255.
    Soni, A., Dharmacharya, D., Pal, A., Srivastava, V. K., Shaw, R. N., & Ghosh, A. (2021). Design of a machine learning-based self-driving car. In Machine Learning for Robotics Applications (pp. 139-151). SG: Springer.
    Spratlin Jr, A. D. (2021). Autonomous and electric Cars and Trucks: Old They Survive COVIDP. The Brief, 50(2), 50-59.
    Steyvers, M., & Griffiths, T. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(1), 5228-5235.
    Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook Of Latent Semantic Analysis (pp. 439-460). NJ: Erlbaum publishing.
    Suominen, A., Toivanen, H., & Seppänen, M. (2017). Firms' knowledge profiles: Mapping patent data with unsupervised learning. Technological Forecasting and Social Change, 115, 131-142.
    Taeihagh, A., & Lim, H. S. M. (2019). Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks. Transport Reviews, 39(1), 103-128.
    Tang, H., Shen, L., Qi, Y., Chen, Y., Shu, Y., Li, J., & Clausi, D. A. (2012). A multiscale latent Dirichlet allocation model for object-oriented clustering of VHR panchromatic satellite images. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1680-1692.
    Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. The Rand Journal of Economics, 21 (1), 172-187.
    Trumbach, C. C., Payne, D., & Kongthon, A. (2006). Technology mining for small firms: Knowledge prospecting for competitive advantage. Technological Forecasting and Social Change, 73(8), 937-949.
    Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
    Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Annals of Operations Research, 197(1), 159-190.
    Tzeng, G.-H., & Huang, J.-J. (2011). Multiple Attribute Decision Making: Methods and Applications. N.Y.: CRC Press.
    Van Brummelen, J., O’Brien, M., Gruyer, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies, 89, 384-406.
    Van Dijk, L. (2021). Future vehicle networks and ecus architecture and technology considerations. NXP Semiconductors, 855. Retrieved from: https://www.nxp.com/docs/en/white-paper/FVNECUA4WP.pdf.
    Varghese, J. Z., & Boone, R. G. (2015). Overview of autonomous vehicle sensors and systems. International Conference on Operations Excellence and Service Engineering. 178-191.
    Venugopalan, S., & Rai, V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94, 236-250.
    Wang, J., & Chen, Y.-J. (2019). A novelty detection patent mining approach for analyzing technological opportunities. Advanced Engineering Informatics, 42, 100941.
    Wang, J., Zhang, L., Huang, Y., & Zhao, J. (2020). Safety of autonomous vehicles. Journal of Advanced Transportation, 1-13.
    Wilkerson, J., & Casas, A. (2017). Large-scale computerized text analysis in political science: Opportunities and challenges. Annual Review of Political Science, 20, 529-544.
    Yang, C.-L., Huang, C.-Y., Kao, Y.-S., & Tasi, Y.-L. (2017). Disaster Recovery Site Evaluations and Selections for Information Systems of Academic Big Data. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 4553-4589.
    Yang, C.-L., Shieh, M.-C., Huang, C.-Y., & Tung, C.-P. (2018). A derivation of factors influencing the successful integration of corporate volunteers into public flood disaster inquiry and notification systems. Sustainability, 10(6), 1973.
    Yim, O., & Ramdeen, K. T. (2015). Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. The Quantitative Methods for Psychology, 11(1), 8-21.
    Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020). A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 8, 58443-58469.
    Zekavat, R., & Buehrer, R. M. (2011). Handbook of Position Location: Theory, Practice and Advances (Vol. 27). NJ: John Wiley & Sons.
    Zhao, F., Chen, K., Hao, H., & Liu, Z. (2020). Challenges, potential and opportunities for internal combustion engines in China. Sustainability, 12(12), 4955.
    Zhao, J., Liang, B., & Chen, Q. (2018). The key technology toward the self-driving car. International Journal of Intelligent Unmanned Systems, 6(1), 2-20.
    Zheng, Y., Zhang, Y., Ran, B., Xu, Y., & Qu, X. (2020). Cooperative control strategies to stabilise the freeway mixed traffic stability and improve traffic throughput in an intelligent roadside system environment. IET Intelligent Transport Systems, 14(9), 1108-1115.

    無法下載圖示 本全文未授權公開
    QR CODE