簡易檢索 / 詳目顯示

研究生: 林宏睿
Lin, Hung-Jui
論文名稱: 含吡啶環可撓性配子之銅、銀金屬配位聚合物:自組裝合成、結構鑑定與性質研究
Copper(II)- and Silver(I)-based Coordination Polymers with Flexible Pyridine Ligands: Self-assembly, Structures, and Properties
指導教授: 呂光烈
Lu, Kuang-Lieh
許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 248
中文關鍵詞: 超分子化學配位聚合物自組裝陰離子效應
英文關鍵詞: Supramolecular chemistry, Coordination polymer, Self-assembly, Anion effect
DOI URL: https://doi.org/10.6345/NTNU202204295
論文種類: 學術論文
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討含四吡啶環之可撓性配子1,4-bis(di-(3-picolyl)aminomethyl)benzene (p-bpab)與銅離子或銀離子之自組裝反應,並研究生成之配位聚合物的結構特性及其性質。
    第一部分為有機配子p-bpab搭配具羧酸基之有機配子與氯化銅水溶液於攝氏120 ℃下進行水熱反應,得到三種化合物{[Cu4(p-bpab)2(suc)3Cl2]•(H2O)6}n (1)、[Cu2(p-bpab)(1,4-ndc)2(H2O)2]n (2)以及{[Cu2(p-bpab)(1,4-ndc)2(H2O)2]•(naphthalene)3}n (3)。化合物1、2與 3的結構都是銅離子與具羧酸基之有機配子形成一維鏈狀結構,並以可撓曲配子p-bpab與一維鏈狀結構上之銅離子配位,形成二維或三維結構。其中化合物1由銅離子、p-bpab與succinic acid鍵結形成特殊三維結構。化合物2由銅離子、p-bpab與nap-1,4-dicarboxylic acid組裝形成二維結構。化合物3之合成條件與化合物2相近,但多加萘進行反應,發現萘環與p-bpab上之吡啶環藉由ππ作用力而導致化合物3之整體二維結構與化合物2截然不同。
    第二部分為銀離子與可撓曲配子p-bpab進行室溫自組裝合成,因銀鹽不同陰離子之影響,而得到三種不同的化合物{[Ag2(p-bpab)]•(NO3)2•(CH3OH)}n (4)、{[Ag2(p-bpab)]•(SbF6)2•(CH3OH)6}n (5)及{[Ag2(p-bpab)]•(NO3)•(BF4)•(CH3OH)}n (6),並探討陰離子效應對整體結構影響。使用硝酸銀與p-bpab反應形成具一維正弦波狀結構的化合物4,使用六氟銻酸銀與p-bpab反應形成具一維鋸齒狀結構化合物5,不同陰離子造成的模板效應以及氫鍵等作用力而導致不同的結構。若將化合物4的配方多加入四氟硼酸鈉,反應後形成的化合物6則為化合物4結構中一個硝酸根離子被置換成四氟硼酸陰離子,但化合物6依然為一維正弦波狀結構,且與化合物4大同小異。本結果顯示具硝酸根離子之一維正弦波狀結構非常穩定,即使加入其他陰離子也不影響其結構變化。
    第三部分為硝酸銀與p-bpab之室溫自組裝合成,再加入不同芳香環溶劑反應,得到兩種化合物{[Ag2(p-bpab)]•(NO3)2•(toluene)}n (7)、{[Ag8(p-bpab)4]•(NO3)8•(pyrene)•(THF)2}n (8),並探討客分子效應對整體結構影響。研究發現即使加入能與有機配子p-bpab上的芳香環形成作用力的溶劑如甲苯以及芘,化合物7以及化合物8兩者結構皆為一維正弦波狀結構,且與化合物4之結構大同小異,顯示加入少許芳香環溶劑不足以影響結構變化。
    第四部分探討化合物4是否具有吸附甲苯的能力,並產生類似於化合物7的結構。結果顯示化合物4可能具有吸附甲苯的能力,但於室溫下的吸附量有限,因此無法完全轉換成類似化合物7的結構。

    In this thesis, a flexible pyridine ligand 1,4-bis(di-(3-picolyl)aminomethyl)benzene (p-bpab) was synthesized and characterized.
    We first treated CuCl2 with the p-bpab ligand and several carboxylic acid based ligands under hydrothermal conditions to afford a series of coordination polymers {[Cu4(p-bpab)2(suc)3Cl2]•(H2O)6}n (1), [Cu2(p-bpab)(1,4-ndc)2(H2O)2]n (2) and {[Cu2(p-bpab)(1,4-ndc)2(H2O)2]•(naphthalene)3}n (3). All of these compounds (13) are comprised of one-dimensional (1D) linear chains, composed of carboxylate ligands and Cu(II) metal ions. These 1D linear structures are linked with each other via the p-bpab ligand. The linkage of 1D linear chains in compound 1 results in the formation of a 3D crystal structure, as the p-bpab ligand adopts a different degree of distortion. However, the 1D linear chains in compound 2 which composed of 1,4-nap-dicarboxylate and Cu(II) ions, can be transformed into a 2D structure with the support of the p-bpab ligand. When naphthalene is added to compound 2, a new crystal structure 3 is formed, where naphthalene acts as a guest molecule.
    In the next stage of research, the p-bpab ligand was further utalized to react with Ag(I) ions with different counteranions by means of a solvent diffusion method at room temperature. A series of Ag-based coordination compounds {[Ag2(p-bpab)]•(NO3)2•(CH3OH)}n (4), {[Ag2(p-bpab)]•(SbF6)2•(CH3OH)6}n (5) and {[Ag2(p-bpab)]•(NO3)•(BF4)•(CH3OH)}n (6) were prepared, and effects of counteranions in these compounds were studied. All of these compound adopted 1D crystal structures. However, significant structural changes were observed between a 1D sinusoidal structure in compound 4 and a 1D zigzag structure in compound 5. The results clearly show that different counteranions can have different effects in crystal structure, including changes in the template effect and hydrogen bonding. In compound 4, when one nitrate counteranion is replaced by tetrafluorate, a similar 1D sinusoidal structure 6 is formed, indicating that a 1D sinusoidal structure 4 with a nitrate counteranion inside structure is a very stable arrangement and will not change when one nitrate counteranion in a 1D sinusoidal structure is replaced with another counteranion (BF4).
    The p-bpab ligand and silver(I) nitrate salts were used with different guest molecules such as toluene and pyrene to synthesize coordination polymers by a solvent diffusion method at room temperature. Compounds {[Ag2(p-bpab)]•(NO3)2•(toluene)}n (7), {[Ag8(p-bpab)4]•(NO3)8•(pyrene)•(THF)2}n (8) were synthesized and the effects of different guest molecules were studied. All of these compounds show 1D sinusoidal structures that are similar to compound 4. The guest molecules trapped in the 1D structure layers of compound 4 could replaced by toluene, pyrene and THF, indicating that the crystal structure of compound 4 remains very stable after the exchange of some guest molecules.
    In addition, the ability of compound 4 to absorb toluene molecule was studied, and results show that compound 4 has only a limited ability to absorb toluene molecules.

    摘要 I ABSTRACT III 謝誌 V 目錄 VI 圖目錄 IX 表目錄 XVIII 第一章 序論 1 1.1 超分子化學 1 1.2 超分子化學中作用力介紹 3 1.2.1 凡得瓦力(van der Waals forces) 3 1.2.2 氫鍵(hydrogen bonding) 5 1.2.3 π−π堆疊作用力(π−π stacking) 6 1.3金屬-有機配位聚合物 7 1.3.1 金屬-有機配位聚合物之構形種類 7 1.3.2 金屬-有機配位聚合物之構形設計 11 1.4自組裝合成法 14 1.4.1 室溫自組裝-擴散法 14 1.4.2 水熱合成法 15 第二章 實驗設計概念 17 2.1 文獻回顧 17 2.2 研究動機 21 第三章 實驗部分 24 3.1 儀器與藥品 24 3.1.1 儀器 24 3.1.2 藥品 25 3.2 有機配子之合成 27 3.2.1 有機配子 1,4-bis(di-(3-picolyl)aminomethyl)benzene (p-bpab)之合成 27 3.3 化合物合成 28 3.3.1 第一部分:水熱自組裝合成 28 3.3.2 第二部分:室溫自組裝合成 31 第四章 結果與討論 36 4.1 有機配子p-bpab之扭曲程度與配位位向說明 36 4.2 有機配子p-bpab與銅金屬之反應 39 4.2.1 化合物{[Cu4(p-bpab)2(suc)3Cl2]•(H2O)6}n (1) 40 4.2.2 化合物[Cu2(p-bpab)(1,4-ndc)2(H2O)2]n (2) 52 4.2.3 化合物{[Cu2(p-bpab)(1,4-ndc)2(H2O)2]•(naphthalene)3}n (3) 61 4.3 有機配子p-bpab與銀金屬之反應─陰離子效應 74 4.3.1 化合物{[Ag2(p-bpab)]•(NO3)2•(CH3OH)}n (4) 75 4.3.2 化合物{[Ag2(p-bpab)]•(SbF6)2•(CH3OH)6}n (5) 85 4.3.3 化合物{[Ag2(p-bpab)]•(NO3)•(BF4)•(CH3OH)}n (6) 95 4.3.4 化合物4、5、6結構與性質比較 104 4.4 有機配子p-bpab與銀金屬之反應─客分子效應 113 4.4.1 化合物{[Ag2(p-bpab)] •(NO3)2•(toluene)}n (7) 114 4.4.2 化合物{[Ag8(p-bpab)4]•(NO3)8•(pyrene)•(THF)2}n (8) 124 4.4.3 化合物7、8結構與性質比較 134 4.4.4 化合物4、6、7、8結構特性探討 139 4.5 化合物4之甲苯客分子吸附試驗 144 第五章 結論 153 參考文獻 155 附錄 159

    1. Lehn, J. M. Science 1985, 227, 849–856.
    2. Lehn, J. M. Angew. Chem. Int. Ed. 1988, 27, 89.
    3. Cram, D. J. Angew. Chem. Int. Ed. 1988, 27, 1009.
    4. Pedersen, C. J. Angew. Chem. Int. Ed. 1988, 27, 1021.
    5. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 2564–2571.
    6. Lehn, J. M. Nobel lecture 1987.
    7. http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s15-02-intermolecular-forces.html
    8. Etler, M. C. Acc .Chem. Res. 1990, 23, 120–126.
    9. (a) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441−449. (b) Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313−323. (c) Trivedi, D. R.; Dastidar, P. Cryst. Growth Des. 2006, 6, 1022−1026. (d) Aakeroy, C. B.; Salmon, D. J.; Smith, M. M.; Desper, J. Cryst. Growth Des. 2006, 6, 1033−1042. (e) Murata, T.; Yakiyama, Y.; Nakasuji, K.; Morita Y. Cryst. Growth Des. 2010, 10, 4898−4905. (f) Orola, L.; Veidis, M. V.; Mutikainen, I.; Sarcevica I. Cryst. Growth Des. 2011, 11, 4009−4016.
    10. (a) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885−3896. (b) Ferguson, S. B.; Sanford, E. M.; Seward, E. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 5410−5419.
    11. Wu, C. D; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127, 8940–8941.
    12. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450–1459.
    13. Lu, Z. Z.; Zhang, R.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. J. Am. Chem. Soc. 2011, 133, 4172–4174.
    14. Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832–7833.
    15. Wang, R.; Meng, Q.; Zhang, L.; Wang, H.; Dai, F.; Guo, W.; Zhao, L.; Sun, D. Chem. Commun. 2014, 50, 4911−4914.
    16. Wang, H. H.; Jia, L. N.; Hou, L.; Shi, W. J.; Zhu, Z.; Wang, Y. Y. Inorg. Chem. 2015, 54, 1841−1846.
    17. He, H.; Sun, F.; Jia, J.; Bian, Z.; Zhao, N.; Qiu, X.; Gao, L.; Zhu, G. Cryst. Growth Des. 2014, 14, 4258−4261.
    18. (a) Zaworotko, M. J. Chem. Commun. 2001, 1-9. (b) Abourahma, H.; Moulton, B.; Kravtsov, V.; Zaworotko, M. J. J. Am. Chem. Soc. 2002, 124, 9990−9991. (c) Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. 2004, 43, 2334–2375. (d) Kitagawa, S.; Uemura, K. Chem. Soc. Rev. 2005, 34, 109−119. (e) Yi, L.; Yang, X.; Lu, T.; Cheng, P. Cryst. Growth Des. 2005, 5, 1215−1219. (f) Perry, J. J. th; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400−1417. (g) Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688–764. (h) Vukotic,V. N.; Loeb, S. J. Chem. Soc. Rev. 2012, 41, 5896–5906. (i) Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. CrystEngComm 2012, 14, 3001–3004.
    19. Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
    20. Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176−182.
    21. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z. Science 2012, 336, 1018−1023.
    22. Lu, Y. L.; Wu, J. Y.; Chan, M. C.; Huang, S. M.; Lin, C. S.; Chiu, T. W.; Liu, Y. H.; Wen, Y. S.; Ueng, C. H.; Chin, T. M.; Hung, C. H.; Lu, K. L. Inorg. Chem. 2006, 45, 2430−2437.
    23. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418−2421.
    24. (a) Carlucci, L.; Ciani, G.; Gudenberg, D. W. v.; Proserpio, D. M. Inorg. Chem. 1997, 36, 3812−3813. (b) Li, J. R.; Bu, X. H.; Zhang, R. H. Dalton Trans. 2004, 813−819. (c) Hong, S. J.; Ryu, J. Y.; Lee, J. Y.; Kim, C.; Kim, S. J.; Kim, Y. Dalton Trans. 2004, 2697−2701. (d) Xu, G. C.; Hua, Q.; Okamura, T. A.; Bai, Z. S.; Ding, Y. J.; Huang, Y. Q. ; Liu, G. X.; Sun, W. Y.; Ueyama, N. CrystEngComm 2009, 11, 261–270. (e) Deng, H. Y.; He, J. R.; Pan, M.; Li, L.; Su, C. Y. CrystEngComm 2009, 11, 909–917. (f) Du, M.; Li, C. P.; Guo, J. H. CrystEngComm 2009, 11, 1536–1540. (g) Bosch, E.; Matheny, J.; Brown, A. E.; Eichler, B. CrystEngComm 2011, 13, 5755–5762. (h) Li, G. B.; He, J. R.; Liu, J. M.; Su, C. Y. CrystEngComm 2012, 14, 2152–2158.
    25. Wu, J. Y.; Lin, Y. F.; Chuang, C. H.; Tseng, T. W.; Wen, Y. S.; Lu, K. L. Inorg. Chem. 2008, 47, 10349–10356.
    26. Wu, J. Y.; Chao, T. C.; Zhong, M. S. Cryst. Growth Des. 2013, 13, 2953−2964.
    27. Wu, J. Y.; Zhong, M. S.; Chiang, M. H.; Bhattacharya, D.; Lee, Y. W.; Lai, L. L. Chem. Eur. J. 2016, 22, 7238–7247.
    28. Tamamura, H.; Ojida, A.; Ogawa, T.; Tsutsumi, H.; Masuno, H.; Nakashima, H.; Yamamoto, N.; Hamachi, I.; Fujii, N. J. Med. Chem. 2006, 49, 3412–3415.
    29. (a) Young, A. G.; Hanton, L. R. Coord. Chem. Rev. 2008, 252, 1346–1386. (b) Antonioli, B.; Bray, D. J.; Clegg, J. K.; Gloe, K.; Gloe, K.; Kataeva, O.; Lindoy, L. F.; McMurtrie, J. C.; Steel, P. J.; Sumby, C. J.; Wenzel, M. Dalton Trans. 2006, 4783–4794. (c) Dong, Y. B.; Ma, J. P.; Huang, R. Q.; Smith, M. D.; zur Loye, H. C. Inorg. Chem. 2003, 42, 294–300.
    30. (a) Du, M.; Zhao, X. J.; Guo, J. H.; Batten, S. R. Chem. Commun. 2005, 4836–4838. (b) Dong, Y. B.; Xu, H. X.; Ma, J. P.; Huang, R. Q. Inorg. Chem. 2006, 45, 3325–3343. (c) Wei, W.; Wu, M.; Huang, Y.; Gao, Q.; Zhang, Q.; Jiang, F.; Hong, M. CrystEngComm 2009, 11, 576–579.
    31. Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897–2904.
    32. (a) Young, A. G.; Hanton, L. R. Coord. Chem. Rev. 2008, 252, 1346–1386. (b) Persson, I.; Nilsson, K. B. Inorg. Chem. 2006, 45, 7428–7434. (c) Wu, J. Y.; Chao, T. C.; Zhong, M. S. Cryst. Growth Des. 2013, 13, 2953−2964.
    33. Alvarez, S. Dalton Trans., 2013, 42, 8617.
    34. GESTIS Substance database: http://gestis-en.itrust.de/nxt/gateway.dll/gestis_en/010070.xml?f=templates$fn=default.htm$3.0

    下載圖示
    QR CODE