簡易檢索 / 詳目顯示

研究生: 蕭欽鴻
Hsiao, Chin-Hung
論文名稱: 氧化釤鋅氧化亞鈷多層膜結構的螢光及磁光特性
Luminescent and Magneto-optical Properties of Zinc Samarium Oxide/Cobalt Monoxide Multilayer Structures
指導教授: 駱芳鈺
Lo, Fang-Yuh
口試委員: 劉岱泯
Liu, Tai-Min
徐鏞元
Hsu, Yung-Yuan
駱芳鈺
Lo, Fang-Yuh
口試日期: 2021/07/07
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 54
中文關鍵詞: 脈衝雷射蒸鍍法氧化鋅氧化亞鈷多層膜磁光法拉第效應
英文關鍵詞: pulsed laser deposition, zinc oxide, cobalt monoxide, multilayer film, magneto-optical Faraday effect
DOI URL: http://doi.org/10.6345/NTNU202201401
論文種類: 學術論文
相關次數: 點閱:185下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討脈衝雷射蒸鍍法於c-sapphire基板製備單層氧化亞鈷(CoO)、氧化釤鋅(Zn1-xSmxO, ZSO)與CoO/ZSO多層結構薄膜之結構特性、光學特性與磁光特性。其中釤原子摻雜比例分別為0、1與3%,薄膜的製備條件為在氧氣壓力1×10^(-3) mbar,加熱棒溫度設定為400℃,脈衝雷射波長為266 nm,雷射能量密度為CoO 2.4 J/cm2、ZSO 2.0 J/cm2。

    利用X光繞射光譜與拉曼散射光譜分析結構特性,觀察到纖鋅礦結構的ZnO(002)與岩鹽結構的CoO(111)的特徵特徵峰,代表各層薄膜為單晶結構。並隨著摻雜比例的上升,晶格常數會變大、晶粒大小會變小。在多層膜結構中會因為熱退火效應與晶格間的不匹配度影響著薄膜的結晶性。拉曼散射光譜中,可以觀察到基板、氧化鋅、氧化鋅缺陷與CoO之特徵譜線。AFM結果顯示所有樣品表面呈現顆粒狀,表面形貌接近原子級的平坦。

    光學特性由光致螢光光譜顯示在室溫中所有多層膜結構有氧化鋅之近能隙發光,以及部分樣品有鋅空缺、氧空缺與鋅間隙等缺陷所造成的發光,並無發現釤離子在4f軌域躍遷或CoO之螢光訊號,亦沒有ZnO/CoO/ZnO量子井相關的光學特性。

    磁光特性由磁光法拉第磁滯曲線結果顯示所有樣品在室溫下皆為順磁性。薄膜之伐得常數隨著波長增加而減少,多層膜的伐得常數計算值與實驗值趨勢與數值相近。

    This thesis focused on the structural, optical and magneto-optical properties of single-layer Sm-doped ZnO (Zn1-xSmxO where x = 0, 0.01, 0.03, ZSO) films and three different types of ZSO/CoO multilayer films on c-sapphire were prepared by pulsed laser deposition. The preparation conditions of the films were as follows: the oxygen pressure was 1×10^(-3) mbar, the temperature of the heater was 400 °C, and the laser energy density of 266 nm wavelength for CoO and ZSO were 2.4 J/cm2 and 2.0 J/cm2, respectively.

    For the structural properties, the characteristic peaks of ZnO and CoO were observed in x-ray diffraction and Raman-scattering spectra, which show that the multilayer films are single-crystalline without interdiffusion. CoO is [111]-oriented on both ZnO and c-sapphire substrates. The bottom layers of the multilayer film structure had a better crystal structure due to the thermal annealing effect. Morphology of all samples show particle-like whose surface grain size are about 220–280 nm, and root mean roughness are less than 5 nm on both ZnO and CoO surface.

    In optical preperties, photoluminescence (PL) spectra showed near-band edge emissions of zinc oxide from all samples at room temperature, and samples with ZSO layer had defects emissions such as zinc vacancies, oxygen vacancies and zinc interstitials. Neither samarium ions 4f orbital transition nor the fluorescent signal of CoO had founded in the PL spectra.

    The Magneto-optical Faraday effect (MOFE) spectroscopy showed only paramagnetic behavior at room temperature. MOFE presented stronger response at wavelength between 320 and 380 nm. The value of Verdet constant of all the films were about -300–500 rad/(T*cm) which decreases with increasing wavelength. Additionally, the estimated values of the effective Verdet constant trended to the measured values for the multilayer films.

    第一章 緒論 1 第二章 背景知識 4 2.1 材料特性 4 2.1.1 藍寶石基板 4 2.1.2 氧化鋅 4 2.1.3 釤 5 2.1.4 氧化亞鈷與氧化鈷 6 2.2 實驗儀器原理介紹 8 2.2.1 脈衝雷射蒸鍍法(Pulsed Laser Deposition, PLD) 8 2.2.2 表面輪廓儀 10 2.2.3 X光繞射光譜 11 2.2.4 原子力顯微鏡 15 2.2.5 拉曼散射光譜 16 2.2.6 光致螢光光譜 19 2.2.7 法拉第磁光效應 21 第三章 樣品製備 25 3.1 鍍膜條件 25 3.2 靶材製備 26 3.3 基板清洗 26 3.4 鍍膜流程 27 第四章 結果討論與分析 29 4.1 鍍膜速率 29 4.2 結構性質 30 4.2.1 X光繞射光譜分析 30 4.2.2 拉曼散射光譜分析 35 4.2.3 AFM分析 37 4.3 光致螢光光譜分析 42 4.4 磁光法拉第效應分析 46 第五章 結論 51 參考資料 53

    [1] T. Dietl, Science 287, 5455 (2000).
    [2] Ü.Ö.Hadis Morkoç, Zinc Oxide Fundamentals, Materials and Device Technology. (Wiley-VCH, 2009).
    [3] W.J. Jeong, Sol. Energy Mater. Sol. Cells, 65, 37 (2001).
    [4] M. Getzlaff, Fundamentals of magnetism (Springer, 2008).
    [5] D. Arora, RSC Adv. 6, 78122 (2016).
    [6] Y. Wang, J. Piao, Y. Lu, S. Li, and J. Yi, Mater. Res. Bull. 83, 408 (2016).
    [7] P. C. Chang, J. Alloys Compd 875, 159948 (2021).
    [8] M. A. Dem'yanenko, in Two-dimensional Materials for Photodetector, (2018).
    [9] J. Y. Andersson, Appl. Phys. Lett 59, 857 (1991).
    [10] B. F. Levine, Appl. Phys. Lett 56, 851 (1990).
    [11] T. Noda, Appl. Phys. Lett 104, 122102 (2014).
    [12] N. Han, Mater. Res. 22(3), e20180689 (2019).
    [13] M. T. Greiner, NPG Asia Mater. 5, e55 (2013).
    [14] https://www.sapphire.lt/sapphire
    [15] K. Badreddine, J. Nanomater. 2018, 1 (2018).
    [16] https://en.wikipedia.org/wiki/Samarium
    [17] R. Shantyr, Thin Solid Films 464, 65 (2004).
    [18] H. N. Ok, Phys. Rev. 168, 550 (1968).
    [19] R. Drasovena, J. Optoelectron. Adv. Mater. 11, 2141 (2009).
    [20] M. S. Bernard Raveau, Cobalt Oxides: From Crystal Chemistry to Physics (Weinheim : Wiley-VCH Verlag & Co. KGaA, 2012).
    [21] 吳金龍、徐永桓, 真空技術 23卷1期, 49 (2010).
    [22] 林智偉, 博士論文, The Study of Epitaxial Growth of ZnO on Single-Crystal Substrates Using Buffer Layer, 交通大學, (2007).
    [23] B. D. Cullity, Elements of X-Ray Diffraction. (Pearson, 2001).
    [24] C. Hammond, The Basics of Crystallography and Diffraction (Oxford University Press Inc., New York, 2009).
    [25] Y. W. E. Matsubara, X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems (Springer, 2011).
    [26] 黃英碩, 科儀新知 第二十六卷第四期, 7 (2005).
    [27] https://www.nanoandmore.com/what-is-atomic-force-microscopy
    [28] 林明彥, 科儀新知 第二十七卷第二期, 46 (2005).
    [29] 王俊凱, 科儀新知 第二十三卷第四期, 46 (2002).
    [30] S. Mosca, Nat. Rev. Methods Primers 1 (2021).
    [31] https://www.edinst.com/blog/what-is-confocal-raman-microscopy
    [32] 謝嘉民, 科儀新知 第二十六卷第六期, 39 (2005).
    [33] J. L. M. Leah Bergman, Handbook of Luminescent Semiconductor Materials (CRC Press, 2011).
    [34] S. Vempati, Nanoscale Res. Lett. 7:470 (2012).
    [35] B. Lin, Appl. Phys. Lett 79, 943 (2001).
    [36] T. Haider, International Journal of Electromagnetics and Applications 7(1), 17 (2017).
    [37] I. M. Boswarva, Proc. Math. Phys. Eng. Sci. P ROY SOC A-MATH PHY 278, 588 (1962).
    [38] É. T. d. Lacheisserie, Magnetism (Springer-Verlag New York, 2002).
    [39] D. Budker, Rev. Mod. Phys. 74, 1153 (2002).
    [40] P.S.Hauge, Surf. Sci. 56, 148 (1976).
    [41] R. Drasovean, J. Sci. Arts 2(13), 379 (2010).
    [42] A. Matsuda, Applied Surface Science 349, 78 (2015).
    [43] L. Boatner, Rep. Prog. Phys. 41(1), 88 (2001).
    [44] F. Y. Lo, J. Appl. Phys. 117 (2015).
    [45] A. V. Ravindra, J Nanosci Nanotechnol 14, 5591 (2014).
    [46] H. Y. He, J. Nanostructure Chem. 5, 169 (2015).
    [47] I. Markevich, AIMS Mater. Sci. 3, 508 (2016).
    [48] Z. Yao, Nanoscale Res. Lett. 11, 511 (2016).

    下載圖示
    QR CODE