研究生: |
劉俊旻 Liou, Jyun-Min |
---|---|
論文名稱: |
桃園草漯沙丘沉積構造研究 Study on the Sedimentary Structures of Caota Sand Dunes in Taoyuan |
指導教授: |
林宗儀
Lin, Tsung-Yi |
口試委員: |
陳文山
Chen, Wen-Shan 許民陽 Hsu, Min-Yang 林宗儀 Lin, Tsung-Yi |
口試日期: | 2021/08/27 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 海岸沙丘 、沉積構造 、風成作用 、粒徑分析 、透地雷達 |
英文關鍵詞: | Coastal dunes, Sedimentary structures, Aeolian processes, Particle size analyze, Ground penetrating radar |
研究方法: | 實驗設計法 、 行動研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202101817 |
論文種類: | 學術論文 |
相關次數: | 點閱:106 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
沉積構造分析,有助於理解沉積作用,並藉由沉積作用的解釋推斷沉積環境。台灣對於海岸風成沙丘的沉積構造研究相對較少,本研究希望藉由觀察分析現生沙丘之沉積構造,解釋在海岸沙丘環境下所呈現的沉積構造與其沉積作用之關聯性。並使用透地雷達,觀察草漯沙丘地層結構,推測草漯沙丘的堆積方向的變化,與現生沉積構造的分析相呼應。
本研究的沉積構造調查分析顯示,草漯沙丘為一在豐富河川供砂與盛行風作用下,結合小尺度風向變化、人工結構物(攔砂籬)設置、季節性風向等作用,形塑成的海岸前列沙丘。本研究根據不同的沉積方式作用、型態,將沉積構造進一步細分為水平紋理、平行紋理、顆粒流紋理、顆粒沉降流紋理等4種,並整理出沙丘不同位置沉積構造特性,沙丘前坡以板狀交錯紋理與平行紋理為主,沙丘頂為水平紋理及楔狀交錯紋理,沙丘後坡則為板狀交錯紋理、平行紋理與少量水平紋理分布。草漯沙丘的沉積物顆粒以細砂為主,具有淘選度良好、負偏態、尖頂峰等特性。沉積物因為離岸遠近而呈現不同特性,沙丘前坡處因接近海灘,而呈現海灘砂特性,沙丘頂與後坡則呈現風成砂特性,具有淘選度與偏度差異。透地雷達觀測發現,沙丘沉積方向以向內陸向南發育為主。
整體而言,沙源豐富的海灘砂在向岸風作用下,經由沙丘前坡、沙丘頂、沙丘後坡向南內陸搬運堆積,並在季節性風向變化與人工結構物影響下,呈現上述的沉積構造分布與沉積物顆粒特性。根據研究結果,本研究發現除了向岸風作用外,人工結構物也是影響沉積作用的關鍵外來因素,對海岸沙丘的影響不僅呈現於沉積構造,也可透過沙丘地形進行檢視而呈現不自然的增高增陡現象。
The analysis of sedimentary structure helps to understand sedimentary processes and infer the sedimentary environment from the interpretation of sedimentary process. Taiwan has relatively few studies on the sedimentary structure of coastal aeolian dunes. This study hopes to observe and analyze the sedimentary structure of existing sand dunes to explain the correlation between the sedimentary structure and its sedimentary processes in the coastal dune environment. The ground penetrating radar (GPR) was used to observe the stratum structure of the Caota sand dunes, and infer the change of the accumulation direction of the Caota sand dunes, which responds to the analysis of existing sedimentary structures.
The investigation and analysis of the sedimentary structure in this study shows that the Caota sand dunes are shaped by the effects of abundant river sand supply and prevailing winds, combined with small-scale wind direction changes, artificial structures (sand fences), and seasonal wind directions. In this study, the sedimentary structure was further subdivided into four types: horizontal lamination, parallel lamination, grainfall lamination, and grainflow lamination, according to different sedimentary processes and types, and consolidate the characteristics of sedimentary structures at different position of the dunes. Horizontal lamination and parallel lamination are the main ones of the front slope. The top of the sand dunes is horizontal and wedge shape cross lamination. The back slope of the dunes is distributed with planar cross lamination, parallel lamination and a small amount of horizontal lamination. The sediment particles of Caota sand dunes are mainly fine sand, which has the characteristics of well-sorted, negative skewness, and sharp peaks. The sediments have different characteristics due to the distance from the shore. The front slope of the dune is close to the beach and presents the characteristics of beach sand. The top and back slope of the dune presents the characteristics of aeolian sand, with differences in sorting and skewness. Ground-penetrating radar observations found that the direction of sand dune deposition is mainly inland and south.
In general, beach sand with abundant sand sources is transported and accumulated to the south inland through the front slope, top of the dune, and back slope of the dune under the action of the shore wind. Because of the influence of seasonal wind direction changes and artificial structures, Caota sand dnues presents the distribution of sedimentary structures and the characteristics of sediment particles. According to the results of the study, it found that in addition to the effect of onshore wind, artificial structures are also a key factor affecting sedimentary processes. The impact on coastal dunes is not only present in the sedimentary structure, but also changed the topography of the dunes unnaturally.
中文文獻
方中權(2020)。觀察記錄臺灣砂泥岩沉積構造。地工技術叢書(13)。財團法人地工技術研究發展基金會。
王士偉、戴昌鳳、謝凱旋、米泓生(2009)。桃園全新世「潮音石灰岩」之研究。中國地球物理學會與中國地質學會九十八年年會及學術研討會論文摘要集,國立中正大學地球與環境科學系。
王世偉(2008)。找礁、藻礁、找藻礁。國立自然科學博物館館訊。275。
王昱、陳于高(2003)。桃園─新竹台地區構造活動與地形特徵〔未出版之碩士論文〕。國立台灣大學地質科學研究所。
朱傚祖、梁勝雄、李建成、陳建良(2012)。湖口斷層新釋:上盤活動背衝斷層之新發現及露頭構造分析。經濟部中央地質調查所特刊,26,31-51。
何春蓀(1986)。臺灣地質概論-臺灣地質圖說明書。經濟部中央地質調查所。
何起祥(2010)。沉積動力學若干問題的討論。海洋地質與第四季地質,30(4),1-9。
吳正、吳克剛(1987)。海南島東北部海岸沙丘的沉積構造特徵發育模式。地理學報,42(2),129-141。
吳秉昀(2017)。地電阻影像法於海岸生物礁調查之研究〔未出版之碩士論文〕。國立中央地學地球科學系。
林宗儀、羅毓芳、洪敬媛(2007)。台灣西南部海岸沙洲島地形變遷。第29屆海洋工程研討會論文集,433-438。
林朝棨(1957)。台灣地形。台灣省文獻委員會。
邵屏華、高銘健(2009)。中埔(臺灣地質圖幅及說明書1/50,000)。經濟部中央地質調查所。
金秉福(2012)。粒度分析中偏度係數的影響及其意義。海洋科學,36(2)。
姜鋒、李志忠、靳建輝、鄧濤、王賢立、夏菁(2015)。基於GPR圖像的河北昌黎海岸橫向沙脊北段沉積構造及其成因。地理研究,24(8),1559-1568。
夏菁、姜鋒、鄧濤、靳建輝、李志忠、王賢立、龔松柏(2014)。福建漳浦赤胡海岸沙丘粒度特徵及其環境意義。湖南師範大學地理學報,37(3),7-13。
桃園縣政府農業發展局(2014)。桃園觀新藻礁生態系保育計畫書。
涂明寬、陳文政(1990)。台灣地質圖說明書-中壢(五萬分之一)。經濟部中央地質調查所。
翁翊家(2015)。恆春風吹沙崖頂沙丘發育之研究〔未出版之碩士論文〕。國立高雄師範大學地理學系。
張瑞軍、何清、孔丹、陳峰(2008)。塔克拉瑪干沙漠北緣沙塵暴園區地表沉積物粒度特徵。乾旱區研究,25(6),887-893。
許民陽(1993)。臺灣海岸的地形景觀與景觀保育。市師數理。
許民陽(2012)。台灣西北海岸的藻礁。地質,31(1),64-73。
許民陽、張智原(2007)。臺灣西北海岸後退之研究,淡水河口至頭前溪口段。中國地理學會會刊,38,1-22。
陳文山(2016)。台灣地質概論。台北:中華民國地質學會。
陳冠宇(2017)。利用影像處理技術辨識藻礁範圍〔未出版之碩士論文〕。國立中央大學水文與海洋科學研究所。
靳建輝、李志忠、胡凡根、張輝、王賢立、夏菁、姜鋒、鄧濤、靳姝豫、劉秀銘(2015)。全新世中晚期福建海岸沙丘紀錄的海岸環境與人為活動。地理學報,5(70),751-765。
齊士崢(2009)。臺灣大百科全書。行政院文化建設委員會。
劉靜榆(2014)。臺灣西北部觀音藻礁海岸重金屬含量分析。台灣生物多樣性研究,16(1),1- 19。
盧連戰、史正濤(2010)。沉積物粒度參數內涵及計算方法的解析。環境科學與管理,35(6),54-60。
戴昌鳳(2009)。桃園觀音藻礁生態解說手冊。臺灣中油公司液化天然氣工程處。
英文文獻
Acharya, B., & Bhatt, N. (2019). Sedimentological analysis of a Late Quaternary coastal dune system: An example from Gopnath, south-east Saurashtra,Western India. Sedimentology , 66, 435-458.
Bagnold, R.A. (1941). The physics of blown sand and desert dunes. London: Methuen, Progress in Physical Geography, 18(1), 91-96.
Blott, S.J. & Pye, K. (2012). Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology, 59, 2071-2096.
Bristow, C.S., Bailey S. D., & Lancaster N. (2000). The sedimentary structure of linear sand dunes. Nature, 406(6), 56-59.
Chen, Y.-G. & Liu, T.-K. (2000). Holocene uplift and subsidence along an active tectonic margin southwestern Taiwan. Quaternary Science Reviews, 19, 923-930.
Chepil, W.S. (1945). Dynamics of wind erosion:II. Initiation of soil movement. Soil Science, 60(5), 397-411.
Clemmensen, L.B., & Abrahamsen, K. (1983). Aeolian stratification and facies association in desert sediments. Arran basin (Permian), Scotland. Sedimentology, 30, 311-339.
Cornelis, W.M. (2006). Hydroclimatology of wind erosion in arid and semiarid envirmonments. Dryland Ecohydrology, 141-159.
Friedman, G.M. (1961). Distinction between dune, beach, and river sands from their textrual characteristics. Journal of Sedmentary Petrology, 31(4), 514-529.
Friedman, G.M. (1973). Textural parameters of sands-useful or useless ? Geol. Soc. America Abs. With Programs, 5(7), 626-627.
Gilbert, A.S. (Volume ed.) (2017). Grain size analysis. Encyclopedia of Geoarchaeology, 341-348.
Goldsmith, V. (1978). Coastal dunes. In: Davis, R.A. (ed.) Coastal Sedimentary Environments. Springer, New York, 171-235.
Hesp, P.A. (1988). Morphology, dynamics and internal stratification of some established foredunes in Southeast Australia. Sedimentary Geology, 55(1-2), 17-41.
Hugenholtz, C.H., Moorman, B.J., & Wolfe, S.A. (2007). Ground Penetrating Radar (GPR) imaging of the internal structure of an active parabolic sand dune. Geological Society of America, 432, 19-34.
Hunter, R.E. (1977). Terminology of cross-stratified sedimentary layers and climbing-ripple structures. Journal of Sedmentary Petrology, 47, 697-706.
Hunter, R.E. (1981). Stratification styles in eolian sandstones: some Pennsylvanian to Jurassic examples from the western interior USA. The Society of Economic Paleontologists and Mineralogist. (SEPM), 31, 315-329.
Kocurek, G. (1988). First-order and super bounding surfaces in eolian sequences—Bounding surfaces revisited. Sedimentary Geology, 56(1-4), 193-206.
Leandro, C.G., Barboza, E.G., Caron, F., & de Jesus, F.A.N. (2019). GPR trace analysis for coastal depositional environments of southern Brazil. Journal of Applied Geophysics, 162, 1-12.
Mason, C.C., & Folk, R.L. (1958). Differentiation of beach dune, and Aeolian flat environment by size analysis, Mustang Island, Texas. Journal of Sedimentary Research. 28(2), 532-538.
Masselink, G., & Gehrels, R. (2014). Coastal Environments and Global Change. John Wiley and Sons.
Mckee, E. D. (1979). A study of global sand seas. Geological Survey Porfessional Paper, 1052.
McManus, J. (1988). Grain size determination and interpretation. In: Tucker, M. ed. Techniques in Sedimentology. Blackwell, Oxford, 63-85.
Niemann, S. L., Fredsøe, J., & Jacobsen, N.G. (2011). Sand dunes in steady flow at low Froude numbers: dune height evolution and flow resistance. J. Hydraul. ,137, 5-14.
Oliveira, J. G. Jr. , Walter, E., Tabosa, M.W.F., & Helenice, V. (2008). From barchan to domic shape: evolution of a coastal sand dune in northeastern Brazil based on GPR survey. Rev. Bras. Geof., 26 (1), 5-20.
Pye, K. (1982). Negatively skewed aeolian sands from a humid tropical coastal dunefield, Northern Australia. Sedimentary Geology, 31, 249-266.
Pye, K. (1983). Coastal dune. Progress in Physical Geography, 7(4), 531-557.
Pye, K., & Tsoar, H. (1990). Aeolian Sand and Sand Dunes. Unwin Hyman, London.
Sahu, B.K. (1964). Depositional mechanisms from the size analysis of clastic sediments. Journal of Sedimentary Petrology, 34, 73-83.
Shepard, F.P., & Young, R. (1961). Distinguishing between beach and dune sands. Journal of Sedimentary Petrology, 31(2), 196-214.
Shepard, F.P. (1965). Types of submarine valleys: geological notes. AAPG Bulletin, 49, 304-310.
Simons, D.B., & Richardson E.V. (1960). Forms of Bed Roughness in Alluvial Channels. U.S Geological Suvey.
Suchocki, J.A., & Hewitt, P.G. (1978). Laboratory Manual for Conceptual Physical Science Explorations. (2nd ed.). Pearson.
van Vliet-Lanoë, B., Goslin, J., Hénaff, A., Hallégouët, B., Delacourt, C., le Cornec, E., & Meurisse-Fort, M. (2016). Holocene formation and evolution of coastal dunes ridges, Brittany (France). Comptes Rendus Geoscience, 348(6), 462–470
Visher, G.S. (1984). Exploration Stratigraphy. Tulsa, Penn Well Publishing.
Walker, I.J. & Nickling, W.G. (2002). Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes. Progress in Physical Geography. 26(1), 47–75.
Reineck, H.E., Singh, I.B. (1980). Depositional Sedimentary Environments. (2nd ed.). Springer, New York.
Walker, R.G., & James, N.P. (1992). Facies Models Response to Sea Level Change. (5th ed.) Geological Association of Canada.
Zong, Y. (2004). Mid-Holocene sea-level highstand along the Southeast Coast of China. Quaternary International, 117, 55–67.
網路資料來源:
中央地質調查所,地質資料整合查詢:https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm,搜索日期:2019.7.7
中央氣象局觀測資料查詢:https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp,搜索日期:2020.4.1
國立中央大學地球科學系,雷射粒徑分析處理流程:http://basin.earth.ncu.edu.tw/XRD/grain%20size-sample%20preparation.htm,搜索日期:2020.4.6
划重點 | 岩層結構構造——層理詳解!:
https://zi.media/@yidianzixun/post/gRtxhR,檢索日期:2021.8.16