研究生: |
葉弘裕 Yeh, Hung-yu |
---|---|
論文名稱: |
Kerr 黑洞中的準正則模 Quasi-Normal Modes of Kerr Black Holes |
指導教授: |
高賢忠
Kao, Hsien-Chung |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 黑洞 、準正則模 、一階修正 、量子重力 |
英文關鍵詞: | Black Holes, Quasi-normal Modes, First-order Corrections, Quantum Gravity |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用Teukolsky's radial方程式的解,在複數平面沿著兩條同屬於相同同倫類的路徑做解析連續,其波函數的monodromy必須是相同的,藉此得到Kerr黑洞中的準正則模,而且我們的結果和利用WKB方法所得到的是一致的。我們更進一步討論藉著展開零階的波方程,去計算4維Kerr黑洞準正則模漸進行為的系統性方法。
We analytically derive quasi-normal frequencies for Kerr black hole by analytically continuing the relevant solution of Teukolsky's radial equation to the complex plane, matching the monodromy of the wave function along two different contours in the same homotopy class. Our results are in agreement with the results from WKB. We also discuss a systematic method of analytically calculating the asymptotic form of quasi-normal frequencies of four-dimensional Kerr black hole by expanding around the zeroth-order approximation to the wave equation.
[1] C. V. Vishveshwara, Nature 227 (1970), 936.
[2] T. Regge and J. A. Wheeler, Phys. Rev. 108 (1957), 1063.
[3] H-P. Nollert, Phys. Rev. D 47 (1993), 5253–5258.
[4] S. Hod, Phys. Rev. Lett. 81 (1998), 4293.
[5] O. Dreyer, Phys. Rev. Lett. 90 (2003), 081301.
[6] G. Immirzi, Nucl. Phys. B 57 (1997), 65.
[7] H-P. Nollert, Class. Quantum Grav. 16 (1999), R159–R216.
[8] F. J. Zerilli, Phys. Rev. D 2 (1970), 2141.
[9] B. P. Jensen and P. Candelas, Phys. Rev. D 33 (1986), 1590.
[10] B. P. Jensen and P. Candelas, Phys. Rev. D 35 (1987), 4041.
[11] Ching E S C, Leung P T, Suen W M and Young K, Phys. Rev. Lett. 74 (1995),
2414–2417.
[12] Ching E S C, Leung P T, Suen W M and Young K, Phys. Rev. D 52 (1995),
2118–2132.
[13] J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360 (1995), 7.
[14] A. Zee, Quantum field theory, Princeton, 2003.
[15] C. Rovelli, Quantum Gravity, Cambridge, 2008.
[16] C. Rovelli and L. Smolin, Nucl. Phys. B 442 (1995), 593.
[17] A. Ashtekar and J. Lewandowski, Class. Quantum Grav. 14 (1997), A55.
[18] E. W. Leaver, Proc. R. Soc. Lond 402 (1985), 285–298.
[19] L. Motl and A. Neitzke, Adv. Theor. Math. Phys. 7 (2003), 307.
[20] N. Andersson and C. J. Howls, Class. Quantum Grav. 21 (2004), 1623.
[21] S. Musiri and G. Siopsis, Class. Quantum Grav. 20 (2003), L285–L291.
[22] W. Rudin, Real and Complex Analysis, third ed., ch. 16, McGraw-Hill, New
York, 1987.
[23] Lars V. Ahlfors, Complex Analysis, third ed., ch. 8, McGraw-Hill, New York,
1979.
[24] E. Berti and K. D. Kokkotas, Phys. Rev. D 67 (2003), 064020.
[25] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2 (1999), 1999–2.
[26] U. Keshet and S. Hod, Phys. Rev. D 76 (2007), 061501.
[27] S. A. Teukolsky, Phys. Rev. Lett. 29 (1972), 1114.
[28] E. Berti, V. Cardoso and S. Yoshida, Phys. Rev. D 69 (2004), 124018.
[29] M.R. Setare and E.C. Vagenas, Mod. Phys. Lett. A 20 (2005), 1923-1932.
[30] Fu-Wen Shu and You-Gen Shen, JHEP 08 (2006), 087.