研究生: |
郭蓁穎 Kuo, Chen-Ying |
---|---|
論文名稱: |
群大小對洞穴蝙蝠避險行為之影響 The effects of group size on behavioral responses to risks for cave-dwelling bats |
指導教授: |
黃俊嘉
Huang, Chun-Chia Joe 李佩珍 Lee Shaner, Pei-Jen |
口試委員: |
黃俊嘉
Huang, Chun-Chia Joe 李佩珍 Lee Shaner, Pei-Jen 何熙誠 Ho, Hsi-Cheng 陳湘繁 Chen, Shiang-Fan |
口試日期: | 2025/01/07 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 社會定位叫聲 、稀釋效應 、噪音叫聲 、棲所干擾 |
英文關鍵詞: | dilution effect, noise-like call, roost disturbance, socialocation call |
研究方法: | 實驗設計法 |
論文種類: | 學術論文 |
相關次數: | 點閱:6 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
個體可透過聚集防禦來減少面對補食者與競爭者給予的風險,但部分避險行為可能讓部分個體付出受傷或死亡等高昂成本,而避險行為的代價與好處可能會隨著群大小有所變化,進一步影響群體避險策略的使用。穴居蝙蝠常於棲所形成大群集,目前尚不清楚群居是否能降低蝙蝠於棲所內的風險與影響叫聲的使用。本研究藉由模擬臺灣小蹄鼻蝠(Rhinolophus monoceros)於洞穴中在受到人類干擾,來了解群大小對於其避險策略的影響,並初步探討社會叫聲與避險行為的關係。結果顯示,當入侵者試圖捕捉蝙蝠時,臺灣小蹄鼻蝠展現了偵測、接觸飛行與飛離等避險行為,並發出11種社會叫聲,但以社會定位叫聲與噪音型叫聲使用最多。隨著蝙蝠所處的子群集大小增加,蝙蝠接觸飛行行為增加而飛離行為減少,推測臺灣小蹄鼻蝠在子群集較大時,傾向以聚集之方式加強稀釋效應。此外當子群集大小增加時,臺灣小蹄鼻蝠會增加兩類主要社會叫聲的數量,但僅社會定位叫聲和對接觸飛行次數增加有顯著關係,未來需使用回播實驗進一步驗證社會叫聲功能。本研究結果顯示臺灣小蹄鼻會根據群集內的子群集大小調整避險行為,推測穴居蝙蝠可能利用於棲所成大群體,進而降低穴居蝙蝠在棲所內的捕食壓力,同時,並推測他們在黑暗中可使用聲音訊號進行溝通,來協調群體避險策略的調整。
Individuals can mitigate risks from predators and competitors through aggregation-based defense mechanisms. However, some behavioral responses to risk may impose significant costs, such as injury or death, on certain individuals. The costs and benefits of these behaviors often vary with group size, influencing the adoption of collective risk-mitigation strategies. Cave-dwelling bats commonly form large aggregations at roosts, but it remains unclear whether grouping reduces roost-specific risks and how it influences the use of vocalizations.This study investigated the effects of group size on strategies to risk in Formosan lesser horseshoe bats (Rhinolophus monoceros) under simulated human disturbance and explored the relationship between social calls and defensive behaviors. When intruders attempted to capture the bats, they exhibited a range of defensive behaviors, including vigilance, contact flight, and take flight, while producing 11 distinct types of social calls. Among these, socialocation and noise calls were the most frequently used.As cluster size increased, bats displayed more contact flight behavior and fewer taking flights, suggesting a preference for clustering to enhance the dilution effect in larger cluster. Additionally, the use of social calls increased with cluster size, but statistical analysis revealed that only socialocation calls were significantly associated with the frequency of contact flight, while noise calls showed no significant relationship. These findings imply that socialocation calls may facilitate coordination during contact flight, whereas noise calls likely do not serve as recruitment signals for mobbing, contrary to prior assumptions.This study demonstrates that Formosan lesser horseshoe bats adjust their defensive behaviors based on cluster size, leveraging aggregation to reduce predation risk within roosts. It further highlights the potential role of vocal communication in the dark, enabling bats to coordinate group responses and optimize their risk-mitigation strategies. Future playback experiments are needed to validate the functional roles of social calls in these defensive behaviors.
方引平與鄭錫奇(2011)。無尾葉鼻蝠生活史及生態學之研究(3/3)。行政院農業委員會林務局。臺北。
李玲玲與徐昭龍(2006)。陽明山國家公園蝙蝠多樣性之研究。內政部營建署陽明山國家公園管理處。臺北。
陳湘繁(1995)。陽明山地區共域性臺灣葉鼻蝠(Hipposideros armiger)及臺灣小蹄鼻蝠(Rhinolophus monoceros)之活動模式與食性。國立臺灣大學碩士論文。臺北 。
陳胡彥(2022)。倚山傍水四村落—大礁溪沖積扇上的人文與自然。財團法人宜蘭縣私立慧燈中學。宜蘭。
黃子典(1999)。陽明山地區臺灣小蹄鼻蝠(Rhinolophus monoceros)的族群動態。國立臺灣大學碩士論文。臺北。
黃俊嘉與張恒嘉(2022)。壽山洞穴友善蝙蝠閘門規劃與監測。壽山國家自然公園管理處。高雄。
Allan, A. T., & Hill, R. A. (2021). Definition and interpretation effects: How different vigilance definitions can produce varied results. Animal Behaviour, 180, 197–208.
Altringham, J. D. (2011). Bats: From Evolution to Conservation. Oxford University Press.
Archetti, M. (2011). A strategy to increase cooperation in the volunteer's dilemma: Reducing vigilance improves alarm calls. Evolution, 65(3), 885–892.
Arnold, B., De La Cruz Mora, J. M., & Roesch, J. (2022). Assessing the structure and function of distress calls in Cuban fruit-eating bats (Brachyphylla nana). Frontiers in Ecology and Evolution, 10, 907751.
Atkins, A., Little, R. M., Redpath, S. M., & Amar, A. (2019). Impact of increased predation risk on vigilance behaviour in a gregarious waterfowl: The Egyptian goose Alopochen aegyptiaca. Journal of Avian Biology, 50(6).
Bacchus, M. D., Domenici, P., Killen, S. S., McCormick, M. I., & Nadler, L. E. (2024). Kinematic performance declines as group size increases during escape responses in a schooling coral reef fish. Frontiers in Fish Science, 1, Article 1294259.
Barclay, R. M., Harder, L. D., Kunz, T. H., & Fenton, M. B. (2003). Life histories of bats: life in the slow lane. Bat ecology, 209-253.
Bat Conservation International. (2024). Visit Bracken Cave Preserve. Bat Conservation International. https://www.batcon.org/experience-bats/bat-happenings/visit-bracken-cave-preserve/ 21/1/2025
Beauchamp, G. (2001). Should vigilance always decrease with group size? Behavioral Ecology and Sociobiology, 51, 47–52.
Beauchamp, G. (2008). What is the magnitude of the group-size effect on vigilance? Behavioral Ecology, 19(6), 1361–1368.
Beauchamp, G. (2019). On how risk and group size interact to influence vigilance. Biological Reviews, 94(6), 1918–1934.
Beauchamp, G., Li, Z., Yu, C., Bednekoff, P. A., & Blumstein, D. T. (2021). A meta-analysis of the group-size effect on vigilance in mammals. Behavioral Ecology, 32(5), 919-925.
Bliard, L., Dufour, P., Griesser, M., & Covas, R. (2024). Family living and cooperative breeding in birds are associated with the number of avian predators. Evolution. https://doi.org/10.1093/evolut/qpae058
Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Sunderland, MA: Sinauer Associates.
Caro, T. M. (2005). Antipredator defenses in birds and mammals. University of Chicago Press.
Carter, G. G., Logsdon, R., Arnold, B. D., Menchaca, A., & Medellin, R. A. (2012). Adult vampire bats produce contact calls when isolated: Acoustic variation by species, population, colony, and individual. PLOS ONE, 7(6), e38791.
Carter, G., Schoeppler, D., Manthey, M., Knörnschild, M., & Denzinger, A. (2015). Distress calls of a fast-flying bat (Molossus molossus) provoke inspection flights but not cooperative mobbing. PLOS ONE, 10(9), e0136146.
Chaverri, G., Ancillotto, L., & Russo, D. (2018). Social communication in bats. Biological Reviews, 93(4), 1938–1954.
Conover, M. R. (1994). Stimuli eliciting distress calls in adult passerines and response of predators and birds to their broadcast. Behaviour, 131(1–2), 19–37.
Cortez, M. V., Navarro, J. L., & Martella, M. B. (2018). Effect of antipredator training on spatial behaviour of male and female Greater Rheas (Rhea americana) reintroduced into the wild. Acta Ornithologica, 53(1), 81–90.
Cunha, F. C. R. D., Fontenelle, J. C. R., & Griesser, M. (2017). Predation risk drives the expression of mobbing across bird species. Behavioral Ecology, 28(6), 1517-1523.
Danchin, E., Giraldeau, L. A., Valone, T. J., & Wagner, R. H. (2004). Public information: From nosy neighbors to cultural evolution. Science, 305(5683), 487–491.
Devereux, C. L., FERNÀNDEZ‐JURICIC, E. S. T. E. B. A. N., Krebs, J. R., & Whittingham, M. J. (2008). Habitat affects escape behaviour and alarm calling in Common Starlings Sturnus vulgaris. Ibis, 150, 191-198.
Dinets, V. (2017). Coordinated hunting by Cuban boas. Animal Behavior and Cognition, 4(1), 24–29.
Duca, C., Brunelli, W. A., & Doherty Jr, P. F. (2019). Predator search image and the dilution effect: When is the best time to nest? The Auk: Ornithological Advances, 136(2), ukz009.
Eckenweber, M., & Knörnschild, M. (2016). Responsiveness to conspecific distress calls is influenced by day-roost proximity in bats (Saccopteryx bilineata). Royal Society Open Science, 3(5), 160151.
Fausti, S. A., Erickson, D. A., Frey, R. H., & Rappaport, B. Z. (1981). The effects of impulsive noise upon human hearing sensitivity (8 to 20 kHz). Scandinavian Audiology, 10(1), 21–29.
Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 1325–1330.
Frossard, J., & Renaud, O. (2021). Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. Journal of Statistical Software, 99, 1–32.
Furey, N. M., & Racey, P. A. (2016). Conservation ecology of cave bats. In Bats in the Anthropocene: Conservation of bats in a changing world (pp. 463–500).
Furmankiewicz, J. (2016). The social organization and behavior of the brown long-eared bat (Plecotus auritus). In Sociality in Bats (pp. 11–46).
Graw, B., & Manser, M. B. (2007). The function of mobbing in cooperative meerkats. Animal Behaviour, 74(3), 507–517.
Griesser, M., & Ekman, J. (2005). Nepotistic mobbing behaviour in the Siberian jay, Perisoreus infaustus. Animal Behaviour, 69(2), 345–352.
Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31(2), 295–311.
Heffner, R. S., & Heffner, H. E. (1985). Hearing range of the domestic cat. Hearing Research, 19(1), 85–88.
Herbert-Read, J. E. (2016). Understanding how animal groups achieve coordinated movement. Journal of Experimental Biology, 219(19), 2971–2983.
Hothorn, T., Hornik, K., Van De Wiel, M. A., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28(8), 1–23.
Hutson, A. M., Mickleburgh, S. P., & Racey, P. A. (Eds.). (2001). Microchiropteran bats: Global status survey and conservation action plan (Vol. 56). IUCN.
Jaatinen, K., Öst, M., & Lehikoinen, A. (2011). Adult predation risk drives shifts in parental care strategies: a long‐term study. Journal of Animal Ecology, 80(1), 49-56.
Kerth G. (2008). Causes and consequences of sociality in bats. Bioscience 58(8) 737-746.
Knörnschild M. & Tschapka M. (2012). Predator mobbing behaviour in the greater spear-nosed bat Phyllostomus hastatus. Chiroptera Neotropical 18(2) 1132-1135.
Koenig, W. D., Stanback, M. T., Hooge, P. N., & Mumme, R. L. (1991). Distress calls in the acorn woodpecker. The Condor, 93(3), 637-643.
Krams I. Bērziņš A. Krama T. Wheatcroft D. Igaune K. & Rantala M. J. (2010). The increased risk of predation enhances cooperation. Proceedings of the Royal Society B: Biological Sciences 277(1681) 513-518.
Krams, I., Bērziņš, A., & Krama, T. (2009). Group effect in nest defence behaviour of breeding pied flycatchers, Ficedula hypoleuca. Animal Behaviour, 77(2), 513-517.
Kunz, T. H., Fujita, M. S., Brooke, A. P., & McCracken, G. F. (1994). Convergence in tent architecture and tent-making behavior among neotropical and paleotropical bats. Journal of Mammalian Evolution, 2, 57-78.
Landeau L. & Terborgh J. (1986). Oddity and the ‘confusion effect’ in predation. Animal Behaviour, 34(5) 1372-1380.
Lea, A. J., & Blumstein, D. T. (2011). Age and sex influence marmot antipredator behavior during periods of heightened risk. Behavioral Ecology and Sociobiology, 65, 1525-1533.
Lehtonen, J., & Jaatinen, K. (2016). Safety in numbers: the dilution effect and other drivers of group life in the face of danger. Behavioral Ecology and Sociobiology, 70, 449-458.
Liao, C. C., Magrath, R. D., Manser, M. B., & Farine, D. R. (2024). The relative contribution of acoustic signals versus movement cues in group coordination and collective decision-making. Philosophical Transactions B, 379(1905), 20230184.
Lima S. L. & O'Keefe J. M. (2013). Do predators influence the behaviour of bats?. Biological Reviews, 88(3) 626-644.
Lourenço, S. I., & Palmeirim, J. M. (2007). Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. Journal of Zoology, 273(2), 161-168.
Lučan, R. K., & Šálek, M. (2013). Observation of successful mobbing of an insectivorous bat, Taphozous nudiventris (Emballonuridae), on an avian predator, Tyto alba (Tytonidae). Mammalia, 77(2), 235-236.
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60).
Luo, B., Xu, R., Li, Y., Zhou, W., Wang, W., Gao, H., ... & Feng, J. (2021). Artificial light reduces foraging opportunities in wild least horseshoe bats. Environmental Pollution, 288, 117765.
Matsumoto-Oda, A., Okamoto, K., Takahashi, K., & Ohira, H. (2018). Group size effects on inter-blink interval as an indicator of antipredator vigilance in wild baboons. Scientific Reports, 8(1), 10062.
Mattila, H. R., Kernen, H. G., Otis, G. W., Nguyen, L. T., Pham, H. D., Knight, O. M., & Phan, N. T. (2021). Giant hornet (Vespa soror) attacks trigger frenetic antipredator signalling in honeybee (Apis cerana) colonies. Royal Society Open Science, 8(11), 211215.
McGowan, A., Sharp, S. P., Simeoni, M., & Hatchwell, B. J. (2006). Competing for position in the communal roosts of long-tailed tits. Animal Behaviour, 72(5), 1035–1043.
Middleton, N., Froud, A., & French, K. (2022). Social Calls of the Bats of Britain and Ireland: Expanded and Revised Second Edition. Pelagic Publishing Ltd.
Mitchell-Jones, A. J., & McLeish, A. P. (Eds.). (2004). Bat Workers' Manual (3rd ed.). JNCC.
Morelli, F., Benedetti, Y., Díaz, M., Grim, T., Ibáñez-Álamo, J. D., Jokimäki, J., ... & Møller, A. P. (2019). Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecology and Evolution, 9(10), 6096–6104.
Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. The American Naturalist, 111(981), 855–869.
Mundinger, C., Wolf, J. M., Gogarten, J. F., Fierz, M., Scheuerlein, A., & Kerth, G. (2023). Artificially raised roost temperatures lead to larger body sizes in wild bats. Current Biology, 33(18), 3977-3984.
Neudorf, D. L., & Sealy, S. G. (2002). Distress calls of birds in a neotropical cloud forest. Biotropica, 34(1), 118–126.
Neuweiler, G., Bruns, V., & Schuller, G. (1980). Ears adapted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. The Journal of the Acoustical Society of America, 68(3), 741–753.
Neuweiler, G., Metzner, W., Heilmann, U., Rübsamen, R., Eckrich, M., & Costa, H. H. (1987). Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behavioral Ecology and Sociobiology, 20, 53–67.
Patterson, J. E., & Ruckstuhl, K. E. (2013). Parasite infection and host group size: A meta-analytical review. Parasitology, 140(7), 803-813.
Pfalzer, G., & Kusch, J. (2003). Structure and variability of bat social calls: Implications for specificity and individual recognition. Journal of Zoology, 261(1), 21-33.
Pulliam, H. R. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38(2), 419–422. https://doi.org/10.1016/0022-5193(73)90184-7
R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
Respicio, J. M. V., Dela Cruz, K. C., Hughes, A. C., & Tanalgo, K. C. (2024). The behavioural costs of overcrowding for gregarious cave‐dwelling bats. Journal of Animal Ecology, 93(5), 619-631.
Scott-Samuel, N. E., Holmes, G., Baddeley, R., & Cuthill, I. C. (2015). Moving in groups: How density and unpredictable motion affect predation risk. Behavioral Ecology and Sociobiology, 69, 867-872.
Sedláček, J., & Kolomazník, P. (2015). Observation of the mobbing behaviour of insectivorous bats (Chiroptera: Vespertilionidae) towards Falco peregrinus (Aves: Falconiformes). Lynx, series nova, 46.
Shapiro, J. T., Phelps, K., Racey, P., Vicente, A., Viquez-R, L., Walsh, A., Weinberg, M., & Kingston, T. (2024). IUCN SSC BSG guidelines for field hygiene.
Silk, M. J., Croft, D. P., Tregenza, T., & Bearhop, S. (2014). The importance of fission–fusion social group dynamics in birds. Ibis, 156(4), 701-715.
Simmons, N. B & Cirranello AL. (2024). Bat Species of the World: A taxonomic and geographic database. Accessed, 7, 2020.
Spoelstra, K., van Grunsven, R. H., Ramakers, J. J., Ferguson, K. B., Raap, T., Donners, M., ... & Visser, M. E. (2017). Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proceedings of the Royal Society B: Biological Sciences, 284(1855), 20170075.
Tanalgo, K. C., Monfort, N., & Hughes, A. C. (2020). Attacked from above and below: New ethological evidence on the predation strategies of corvid and varanid on a cave-roosting bat. Ethology Ecology & Evolution, 32(6), 596-610.
Tanalgo, K. C., Oliveira, H. F., & Hughes, A. C. (2022). Mapping global conservation priorities and habitat vulnerabilities for cave-dwelling bats in a changing world. Science of The Total Environment, 843, 156909.
Teunissen, N., Kingma, S. A., & Peters, A. (2020). Predator defense is shaped by risk, brood value and social group benefits in a cooperative breeder. Behavioral Ecology, 31(3), 761-771.
Treves, A. (2000). Theory and method in studies of vigilance and aggregation. Animal Behaviour, 60(6), 711-722.
Turner, G. F., & Pitcher, T. J. (1986). Attack abatement: a model for group protection by combined avoidance and dilution. The American Naturalist, 128(2), 228-240.
Van Dijk, T. (1972). A comparative study of hearing in owls of the family Strigidae. Netherlands Journal of Zoology, 23(2), 131-167.
Voigt, C. C., Behr, O., Caspers, B., von Helversen, O., Knörnschild, M., Mayer, F., & Nagy, M. (2008). Songs, scents, and senses: Sexual selection in the greater sac-winged bat Saccopteryx bilineata. Journal of Mammalogy, 89(6), 1401-1410.
Ward, A., & Webster, M. (2016). Other benefits and costs of grouping. In A. Ward & M. Webster (Eds.), Sociality: The Behaviour of Group-living Animals (pp. 89-109). Springer.
Wilson, D. E., & Reeder, D. M. (Eds.). (2005). Mammal species of the world: A taxonomic and geographic reference (Vol. 1). JHU Press.
Wu, X., Pang, Y., Luo, B., Wang, M., & Feng, J. (2018). Function of distress calls in least horseshoe bats: A field study using playback experiments. Acta Chiropterologica, 20(2), 455-464.
Zhou, D., Deng, Y., Wei, X., Li, T., Li, Z., Wang, S., ... & Feng, J. (2024). Behavioral responses of cave-roosting bats to artificial light of different spectra and intensities: Implications for lighting management strategy. Science of The Total Environment, 916, 170339.