簡易檢索 / 詳目顯示

研究生: 許芳齊
Hsu, Fang-Chi
論文名稱: 電力調度之成本與汙染最佳化問題:模型、演算法與效能
Economic and Emission Dispatch Problem:Models, Algorithms, and Performance
指導教授: 蔣宗哲
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 135
中文關鍵詞: 電力調度燃料成本污染氣體排放多目標最佳化差分演算法
DOI URL: http://doi.org/10.6345/NTNU201900892
論文種類: 學術論文
相關次數: 點閱:197下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討電力調度之成本與汙染最佳化問題 (Economic and Emission Dispatch, EED ) 是一個重要的多目標優化議題,由於火力發電廠在產生電能時將會排放出對環境有害的物質,使得排放調度在電力系統中佔有重要的角色。
近年來已經有許多篇解決 EED 問題的論文被提出,然而此領域的學者所使用的實驗測試資料或目標公式眾說紛紜,因此各篇文獻的結果評比會有不公平的隱憂存在,因此本論文將統整63篇年代約2003年至2017年的EED 論文,驗證其結果的正確性,提出問題模型與實驗測試資料,統整出各模型實例下已知最佳解,提供後續 EED 研究者有更好的參考方向與評估數據。探討各篇文獻在生產電能時的發電機組限制與電量守恆限制的處理方法,討論各篇演算法對於求解成本與汙染氣體排放量這兩個衝突目標的處理機制。
利用差分演化演算法搭配多目標演算法 NSGA-II 求解各問題模型的 EED問題,在實驗中利用效能指標 IGD 評估各種問題限制修復機制的優劣,試著找出最佳限制處理方法。其次也利用差分演化演算法搭配參數控制求解 EED 問題的最佳前緣,與統整的各模型實例下已知最佳解做比較。

致謝 ii 中文摘要 iii 目錄 iv 附圖目錄 vi 附表目錄 viii 附錄表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 問題定義 1 1.3 多目標最佳化問題 4 1.4 演化演算法 6 1.5 研究範疇 8 1.6 論文架構 8 第二章 文獻探討 9 2.1 EED問題模型 9 2.2 多目標的方法 39 2.3 問題限制的處理機制 44 2.4 演算法求解EED問題 46 第三章 方法與實驗步驟 48 3.1 差分演化演算法 48 3.2 參數控制 50 3.3 Nondominated Sorting Genetic Algorithm-II (NSGA-II) 50 3.4 演算法流程 52 第四章 實驗數據與效能 53 4.1 問題實驗模型 53 4.2 效能指標 54 4.3 問題限制方法比較 55 4.4 效能比較 64 第五章 結論與未來展望 70 附錄 71 參考文獻 128

[1] D. Walters and G. Sheble, "Genetic algorithm solution of economic dispatch with valve point loading", IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 1325-1332, 1993.
[2] R. Yokoyama, S. Bae, T. Morita and H. Sasaki, "Multiobjective optimal genera-tion dispatch based on probability security criteria", IEEE Transactions on Power Systems, vol. 3, no. 1, pp. 317-324, 1988.
[3] M. Abido, "Environmental/economic power dispatch using multiobjective evolu-tionary algorithms", IEEE Transactions on Power Systems, vol. 18, no. 4, pp. 1529-1537, 2003.
[4] I. Rahman and J. Mohamad-Saleh, "Hybrid bio-Inspired computational intelli-gence techniques for solving power system optimization problems: A comprehen-sive survey", Applied Soft Computing, vol. 69, pp. 72-130, 2018.
[5] M. Modiri-Delshad and N. Rahim, "Multi-objective backtracking search algo-rithm for economic emission dispatch problem", Applied Soft Computing, vol. 40, pp. 479-494, 2016.
[6] M. Elhameed and A. El-Fergany, "Water cycle algorithm-based economic dis-patcher for sequential and simultaneous objectives including practical con-straints", Applied Soft Computing, vol. 58, pp. 145-154, 2017.
[7] B. Hadji, B. Mahdad, K. Srairi and N. Mancer, "Multi-objective Economic Emis-sion Dispatch Solution Using Dance Bee Colony with Dynamic Step Size", Energy Procedia, vol. 74, pp. 65-76, 2015.
[8] D. Aydin, S. Özyön, C. Yaşar and T. Liao, "Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch prob-lem", International Journal of Electrical Power & Energy Systems, vol. 54, pp. 144-153, 2014.
[9] B. Jeddi and V. Vahidinasab, "A modified harmony search method for environ-mental/economic load dispatch of real-world power systems", Energy Conversion and Management, vol. 78, pp. 661-675, 2014.
[10] Y. Liang and J. Cuevas Juarez, "A normalization method for solving the com-bined economic and emission dispatch problem with meta-heuristic algo-rithms", International Journal of Electrical Power & Energy Systems, vol. 54, pp. 163-186, 2014.
[11] S. Jiang, Z. Ji and Y. Shen, "A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch prob-lems with various practical constraints", International Journal of Electrical Power & Energy Systems, vol. 55, pp. 628-644, 2014.
[12] D. Nelson Jayakumar and P. Venkatesh, "Glowworm swarm optimization algo-rithm with topsis for solving multiple objective environmental economic dispatch problem", Applied Soft Computing, vol. 23, pp. 375-386, 2014.
[13] Y. Zhu, J. Wang and B. Qu, "Multi-objective economic emission dispatch con-sidering wind power using evolutionary algorithm based on decomposi-tion", International Journal of Electrical Power & Energy Systems, vol. 63, pp. 434-445, 2014.
[14] T. Niknam, H. Mojarrad and B. Firouzi, "A new optimization algorithm for mul-ti-objective Economic/Emission Dispatch", International Journal of Electrical Power & Energy Systems, vol. 46, pp. 283-293, 2013.
[15] S. Özyön, H. Temurtaş, B. Durmuş and G. Kuvat, "Charged system search algo-rithm for emission constrained economic power dispatch problem", Energy, vol. 46, no. 1, pp. 420-430, 2012.
[16] T. Niknam and H. Doagou-Mojarrad, "Multiobjective economic/emission dis-patch by multiobjective thetas-particle swarm optimisation", IET Generation, Transmission & Distribution, vol. 6, no. 5, pp. 363-377, 2012.
[17] Jingqiao Zhang and A. Sanderson, "JADE: Adaptive Differential Evolution With Optional External Archive", IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945-958, 2009.
[18] A. Chatterjee, S. Ghoshal and V. Mukherjee, "Solution of combined economic and emission dispatch problems of power systems by an opposition-based har-mony search algorithm", International Journal of Electrical Power & Energy Sys-tems, vol. 39, no. 1, pp. 9-20, 2012.
[19] N. Pandit, A. Tripathi, S. Tapaswi and M. Pandit, "An improved bacterial forag-ing algorithm for combined static/dynamic environmental economic dis-patch", Applied Soft Computing, vol. 12, no. 11, pp. 3500-3513, 2012.
[20] S. Sivasubramani and K. Swarup, "Environmental/economic dispatch using mul-ti-objective harmony search algorithm", Electric Power Systems Research, vol. 81, no. 9, pp. 1778-1785, 2011.
[21] D. Gong, Y. Zhang and C. Qi, "Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm", International Journal of Electrical Power & Energy Systems, vol. 32, no. 6, pp. 607-614, 2010.
[22] P. Hota, A. Barisal and R. Chakrabarti, "Economic emission load dispatch through fuzzy based bacterial foraging algorithm", International Journal of Elec-trical Power & Energy Systems, vol. 32, no. 7, pp. 794-803, 2010.
[23] R. Pérez-Guerrero and J. Cedeño-Maldonado, "Differential evolution based economic environmental power dispatch", Proceedings of the 37th Annual North American Power Symposium , pp. 191-197, 2005.
[24] D. Zou, S. Li, Z. Li and X. Kong, "A new global particle swarm optimization for the economic emission dispatch with or without transmission losses", Energy Conversion and Management, vol. 139, pp. 45-70, 2017.
[25] T. Liu, L. Jiao, W. Ma, J. Ma and R. Shang, "Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch", Applied Soft Com-puting, vol. 48, pp. 597-611, 2016.
[26] B. Qu, J. Liang, Y. Zhu, Z. Wang and P. Suganthan, "Economic emission dis-patch problems with stochastic wind power using summation based mul-ti-objective evolutionary algorithm", Information Sciences, vol. 351, pp. 48-66, 2016.
[27] F. Chen, G. Huang, Y. Fan and R. Liao, "A nonlinear fractional programming approach for environmental–economic power dispatch", International Journal of Electrical Power & Energy Systems, vol. 78, pp. 463-469, 2016.
[28] V. Jadoun, N. Gupta, K. Niazi and A. Swarnkar, "Modulated particle swarm op-timization for economic emission dispatch", International Journal of Electrical Power & Energy Systems, vol. 73, pp. 80-88, 2015.
[29] H. Shayeghi and A. Ghasemi, "A modified artificial bee colony based on chaos theory for solving non-convex emission/economic dispatch", Energy Conversion and Management, vol. 79, pp. 344-354, 2014.
[30] L. Benasla, A. Belmadani and M. Rahli, "Spiral Optimization Algorithm for solving Combined Economic and Emission Dispatch", International Journal of Electrical Power & Energy Systems, vol. 62, pp. 163-174, 2014.
[31] A. Ghasemi, "A fuzzified multi objective Interactive Honey Bee Mating Opti-mization for Environmental/Economic Power Dispatch with valve point ef-fect", International Journal of Electrical Power & Energy Systems, vol. 49, pp. 308-321, 2013.
[32] N. Sinha, R. Chakrabarti and P. Chattopadhyay, "Evolutionary programming techniques for economic load dispatch", IEEE Transactions on Evolutionary Computation, vol. 7, no. 1, pp. 83-94, 2003.
[33] L. Wu, Y. Wang, X. Yuan and S. Zhou, "Environmental/economic power dis-patch problem using multi-objective differential evolution algorithm", Electric Power Systems Research, vol. 80, no. 9, pp. 1171-1181, 2010.
[34] S. Rajasomashekar and P. Aravindhababu, "Biogeography based optimization technique for best compromise solution of economic emission dispatch", Swarm and Evolutionary Computation, vol. 7, pp. 47-57, 2012.
[35] N. Roy, A. Ghosh, K. Sanyal, “Normal boundary intersection based mul-ti-objective harmony search algorithm for environmental economic load dispatch problem”, Power Syst, vol. 10, pp.1–6, 2016.
[36] K. Bhattacharjee, A. Bhattacharya and S. Halder nee Dey, "Backtracking search optimization based economic environmental power dispatch prob-lems", International Journal of Electrical Power & Energy Systems, vol. 73, pp. 830-842, 2015.
[37] P. Roy and S. Bhui, "Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem", International Jour-nal of Electrical Power & Energy Systems, vol. 53, pp. 937-948, 2013.
[38] M. Basu, "Economic environmental dispatch using multi-objective differential evolution", Applied Soft Computing, vol. 11, no. 2, pp. 2845-2853, 2011.
[39] Y. Gherbi, H. Bouzeboudja and F. Gherbi, "The combined economic environ-mental dispatch using new hybrid metaheuristic", Energy, vol. 115, pp. 468-477, 2016.
[40] Karakonstantis and A. Vlachos, "Ant Colony Optimization for Continuous Do-mains applied to Emission and Economic Dispatch Problems", Journal of Infor-mation and Optimization Sciences, vol. 36, no. 1-2, pp. 23-42, 2015.
[41] A. Bhattacharya and P. Chattopadhyay, "Solving economic emission load dis-patch problems using hybrid differential evolution", Applied Soft Computing, vol. 11, no. 2, pp. 2526-2537, 2011.
[42] A. Bhattacharya, P.K. Chattopadhyay, "Application of biogeography-based op-timization for solving multi-objective economic emission load dispatch problem", Electric Power Components & Systems, pp. 826–850,2010
[43] J. Cai, X. Ma, Q. Li, L. Li and H. Peng, "A multi-objective chaotic ant swarm optimization for environmental/economic dispatch", International Journal of Electrical Power & Energy Systems, vol. 32, no. 5, pp. 337-344, 2010.
[44] C. Palanichamy and N. Babu, "Analytical solution for combined economic and emissions dispatch", Electric Power Systems Research, vol. 78, no. 7, pp. 1129-1137, 2008.
[45] H. Hamedi, "Solving the combined economic load and emission dispatch prob-lems using new heuristic algorithm", International Journal of Electrical Power & Energy Systems, vol. 46, pp. 10-16, 2013.
[46] A. Abdelaziz, E. Ali and S. Abd Elazim, "Combined economic and emission dispatch solution using Flower Pollination Algorithm", International Journal of Electrical Power & Energy Systems, vol. 80, pp. 264-274, 2016.
[47] R. A. Gonçcalves, C. P. Almeida, J. N. Kuk and A. Pozo, "MOEA/D with adap-tive operator selection for the environmental/economic dispatch problem," Pro-ceedings of Latin America Congress on Computational Intelligence, 2015.
[48] K. Bhattacharjee, A. Bhattacharya and S. Halder nee Dey, "Solution of Eco-nomic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm", International Journal of Electrical Power & En-ergy Systems, vol. 59, pp. 176-187, 2014.
[49] U. Güvenç, Y. Sönmez, S. Duman and N. Yörükeren, "Combined economic and emission dispatch solution using gravitational search algorithm", Scientia Iranica, vol. 19, no. 6, pp. 1754-1762, 2012.
[50] M. Basu, "Economic environmental dispatch using multi-objective differential evolution", Applied Soft Computing, vol. 11, no. 2, pp. 2845-2853, 2011.
[51] S. Sayah, A. Hamouda and A. Bekrar, "Efficient hybrid optimization approach for emission constrained economic dispatch with nonsmooth cost curves", International Journal of Electrical Power & Energy Systems, vol. 56, pp. 127-139, 2014.
[52] K. Mandal and N. Chakraborty, "Effect of Control Parameters on Differential Evolution based Combined Economic Emission Dispatch with Valve-Point Loading and Transmission Loss", International Journal of Emerging Electric Power Systems, vol. 9, no. 4, 2008.
[53] A. Jubril, O. Olaniyan, O. Komolafe and P. Ogunbona, "Economic-emission dis-patch problem: A semi-definite programming approach", Applied Energy, vol. 134, pp. 446-455, 2014.
[54] S. Hemamalini and S. Simon, "Emission constrained economic dispatch with valve-point effect using particle swarm optimization", in IEEE Region 10 Annual International Conference, 2008.
[55] H. Shayeghi, A. Ghasemi "MOABC algorithm for economic/environmental load dispatch solution", Int J Tech Phys Problem Eng, vol. 4, no. 4, pp. 82-88, 2012.
[56] S. Dhanalakshmi, S. Kannan, K. Mahadevan and S. Baskar, "Application of modified NSGA-II algorithm to Combined Economic and Emission Dispatch problem", International Journal of Electrical Power & Energy Systems, vol. 33, no. 4, pp. 992-1002, 2011.
[57] M. Abido, "Multiobjective particle swarm optimization for environmen-tal/economic dispatch problem", Electric Power Systems Research, vol. 79, no. 7, pp. 1105-1113, 2009.
[58] M. Abido, "Multiobjective evolutionary algorithms for electric power dispatch problem", IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 315-329, 2006.
[59] Zhong-Yi Lin, "A Self-adaptive Multi-objective Differential Evolution Algorithm for the Environmental/Economic Dispatch Problem", NTNU master's thesis, 2018.(in chinese)
[60] R. Storn and K. Price, “Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optimiz., vol. 11, pp. 341–359, 1997.
[61] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting con-trol parameters in differential evolution: A comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.
[62] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjec-tive genetic algorithm: NSGA-II", IEEE Transactions on Evolutionary Computa-tion, vol. 6, no. 2, pp. 182-197, 2002.
[63] A. Barisal and R. Prusty, "Large scale economic dispatch of power systems using oppositional invasive weed optimization", Applied Soft Computing, vol. 29, pp. 122-137, 2015
[64] S. Mondal, A. Bhattacharya and S. nee Dey, "Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration", International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 282-292, 2013.
[65] P. Roy, S. Ghoshal and S. Thakur, "Combined economic and emission dispatch problems using biogeography-based optimization", Electrical Engineering, vol. 92, no. 4-5, pp. 173-184, 2010.
[66] T. Niknam, H. Mojarrad and M. Nayeripour, "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch", Energy, vol. 35, no. 4, pp. 1764-1778, 2010.
[67] L. Wang and C. Singh, "Environmental/economic power dispatch using a fuzzi-fied multi-objective particle swarm optimization algorithm", Electric Power Sys-tems Research, vol. 77, no. 12, pp. 1654-1664, 2007.
[68] R. Bharathi, M. Kumar, D. Sunitha and S. Premalatha, "Optimization of com-bined Economic and Emission dispatch problem - A comparative study", in 8th International Power Engineering Conference, pp. 134-139, 2007.
[69] L. Coelho and C. Lee, "Solving economic load dispatch problems in power sys-tems using chaotic and Gaussian particle swarm optimization approach-es", International Journal of Electrical Power & Energy Systems, vol. 30, no. 5, pp. 297-307, 2008.
[70] Ciornei and E. Kyriakides, "A GA-API Solution for the Economic Dispatch of Generation in Power System Operation", IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 233-242, 2012.
[71] A. Srinivasa Reddy and K. Vaisakh, "Shuffled differential evolution for large scale economic dispatch", Electric Power Systems Research, vol. 96, pp. 237-245, 2013.
[72] S. Prabhakar Karthikeyan, K. Palanisamy, C. Rani, I.Jacob Raglend and D. P.Kothari " Security Constrained Unit Commitment Problem with Opera-tional, Power Flow and Environmental Constraints", Wseas Transactions on Power Ssytem, vol. 4, 2009.

下載圖示
QR CODE