簡易檢索 / 詳目顯示

研究生: 高敏華
Kao, Min-Hua
論文名稱: 職前科技教師的工程設計教學專業能力指標之研究
A Study of Pre-service Technology Teachers' Professional Ability Indicators in Engineering Design Teaching
指導教授: 林坤誼
Lin, Kuen-Yi
口試委員: 簡佑宏
Chien, Yu-Hung
黃進和
Huang, Ching Ho
口試日期: 2019/07/15
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 129
中文關鍵詞: 工程設計流程職前科技師資培育德懷術工程設計教學能力指標
英文關鍵詞: engineering design process, pre-service technology teacher education, Delphi, indicators in engineering design teaching
研究方法: 德懷術
DOI URL: http://doi.org/10.6345/NTNU202100452
論文種類: 學術論文
相關次數: 點閱:217下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工程設計流程在當前的科技教育中被廣泛地提起,然而對於教師該如何教學卻少有文獻探討且多仰賴在職教師的自行解讀,而這對於科技教育將成為一大缺口。也因此,本研究旨在透過德懷術,邀請15位工程設計教學專家,包含七位高中生活科技教師,及八位工程設計與科技領域教學的專家教授組成德懷術小組,以協助職前教師培養工程設計教學專業能力的角度,分析工程設計教學能力之細項內容,並有效整合科技教育學者專家與高中生活科技教師的實務經驗,以此建立一套工程設計教學專業能力指標。依據研究結果,最終本研究共進行兩回合的德懷術問卷,發展的工程設計教學能力指標包含九大面向,依序為,「界定問題」、「蒐集資料」、「發展解決方案」、「選取最佳方案」、「建構模型」、「測試」、「討論結果」、「重新設計」以及「完成設計」,同時亦依據研究結果編製34個能力指標。本次研究成果除了能協助職前科技教師了解未來在進行工程設計教學時所應注重的教學能力外,也能建立科技教育專家學者在工程設計教學的討論平台。

    The engineering design process (EDP) has been widely discussed in current technology education. However, there are as yet few studies on how teachers should implement teaching in this regard. This may hence create a huge gap in technology education. In this light, this study employed the Delphi techniques and invited 15 experts on EDP teaching (including 7 senior high school teachers of technology and 8 specialists and professors for EDP teaching and technology studies) to form a Delphi group, with the aim of helping pre-service teachers cultivate their professional competence in EDP teaching, and analyzing the item contents of engineering design pedagogical competence. This study also effectively integrated the practical experiences of technology education scholars and experts and senior high school teachers of technology to construct a set of indicators of professional competence in EDP teaching. Two rounds of Delphi surveys were conducted. On the basis of the research results, the indicators of professional competence in EDP teaching that were developed included nine dimensions in the following order: "Identify the need or problem", " Research need or problem ", "Develop possible solutions", "Select best possible solution", "Construct a prototype", "Test and evaluate solution", "Communicate the solution", "Redesign" and "Finalize design". In addition, 34 competence indicators were compiled. The research results of this study may assist pre-service technology teachers in understanding the pedagogical competences they should focus on in future EDP teaching. Moreover, it may also facilitate the establishment of a platform for technology education experts and scholars to discuss EDP teaching.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 4 第三節 研究範圍與限制 6 第四節 重要名詞解釋 8 第二章 文獻探討 11 第一節 科技教育的工程設計教學目標 11 第二節 工程設計的流程 14 第三節 工程設計教學專業能力指標 30 第三章 研究方法 45 第一節 研究設計 45 第二節 研究對象 47 第三節 研究工具 48 第四節 研究流程 50 第五節 資料分析與詮釋 54 第四章 研究結果與討論 57 第一節 德懷術問卷的發展與專家審查建議 57 第二節 德懷術第一回合問卷分析結果 68 第三節 德懷術第二回合問卷分析結果 82 第四節 德懷術問卷綜合分析與結果討論 94 第五章 結論與建議 97 第一節 結論 97 第二節 研究建議 104 參考文獻 107 一、中文文獻 107 二、英文文獻 109 附錄 115 附錄一 德懷術小組成員背景和說明 116 附錄二 職前科技教師工程設計教學專業能力指標德懷術問卷 117 附錄三 第一回合德懷術修改後的指標 123 附錄四 第二回合德懷術修改後的指標 125 附錄五 職前科技教師的工程設計教學專業能力指標 127

    一、中文文獻
    王子華、張純純(2012)。建構師資培育大學學生資訊素養指標之研究。師資培育與教師專業發展期刊,5(1),1-22。
    吳清山(2005)。師資培育發展的困境與突破。研習資訊,22(6),23-29。
    吳清山(2017)。素養導向教師教育:理念、挑戰與實踐。學校行政雙月刊,112,14-27。
    李隆盛(1996)。科技與職業教育的課題。臺北市:師大書苑。
    李隆盛、林坤誼、莊善媛(2006)。高中生活科技新課程的工程趨向。課程與教學,9(1),51-60。DOI: 10.6384/CIQ.200601.0051。
    汪殿杰(2016)。翻轉高中課程Maker教育─臺北市立大同高中的做法。科學研習,55(1),26-32。
    林生傳(2003)。教育研究法:全方位的統整與分析。台北:心理出版社。
    林坤誼(2016)。主編的話:STEM專題實作活動。科技與人力教育季刊,3(1),1-4。
    范斯淳、游光昭(2016)。科技教育融入STEM 課程的核心價值與實踐。教育科學研究期,61(2),153-183。DOI: 10.6209/JORIES.2016.61(2).06。
    教育部(2018)。十二年國教科技領域課程綱要科技領域。臺北市:作者。
    郭昭佑(2001)。教育評鑑指標建構方法探究。國教學報,13,257-285。
    楊孟麗、謝水南(譯)(2013)。J. R. Fraenkel, N. E. Wallen, & H. H. Hynn著。教育研究法:研究設計實務(第二版)。台北市:心理出版社。
    劉協成(2006)。德懷術之理論與實務初探。教師之友,47(4),91-99。DOI: 10.7053/TF.200610.0091。
    潘慧玲、王麗雲、簡茂發、孫志麟、張素貞、張錫勳、陳順和、陳淑敏、蔡濱如(2004)。國民中小學教師教學專業能力指標之發展。教育研究資訊,12(4),129-168。
    蕭英勵、蔡清田(2016)。雲端科技融入課程教學的實踐策略。師友月刊,585,69-73。
    顏家鈺、劉曼君(2008)。工程設計教育與認證。評鑑雙月刊,16,50-51。

    二、英文文獻
    Asunda, P. A. & Hill, R. B. (2007). Critical features of engineering design in technology education. Journal of Industrial Teacher Education, 44(1), 25-48.
    Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J.(2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379. DOI: 10.1002/j.2168-9830.2007.tb00945.x
    Banks, F. (2008). Learning in DEPTH: developing a graphical tool for professional thinking for technology teachers. International Journal of Technology and Design Education, 18(3), 221-229. DOI:10.1007/s10798-008-9050-z
    Barak, M. (2004). Systematic approaches for inventive thinking and problem-solving: Implications for engineering education. International Journal of Engineering Education, 20(4), 612-618.
    Berland, B., Steingut, R., & Ko, P. (2014). High school student perceptions of the utility of the engineering design process: Creating opportunities to engage in engineering practices and apply math and science content. Journal of Science Education and Technology, 23(6), 705–720. DOI: 10.1007/s10956-014-9498-4.
    Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120. DOI: 10.1002/j.2168-9830.2005.tb00832.x
    English, L. D., King, D., & Smeed, J. (2017). Advancing integrated STEM learning through engineering design: Sixth-grade students’ design and construction of earthquake resistant buildings, The Journal of Educational Research, 110(3), 255-271, DOI: 10.1080/00220671.2016.1264053
    Ferrari, A., Cachia, R., & Punie, Y (2009). Innovation and creativity in education and training in the EU member states: Fostering creative learning and supporting innovative teaching. Literature review on innovation and creativity in E&T in the EU member states (ICEAC). Retrieved May 4, 2019, from https://www.researchgate.net/publication/265996963
    Gliem, R. R., & Gliem, J. A. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-Type scales. Paper presented at the Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, The Ohio State University, Columbus, OH.
    Hailey, C., Erekson, T., Becker, K., & Thomas, M. (2005). National Center for Engineering and Technology Education. The Technology Teacher, 64(5) 23-26.
    Hammer, D., & Schifter, D. (2010). Practices of Inquiry in Teaching and Research. Cognition and Instruction, 19 (4) , 441-478. DOI: 10.1207/S1532690XCI1904_2
    Householder, D. L., & Hailey, C. E. (Eds.). (2012). Incorporating engineering design challenges into STEM courses. Retrieved September 10, 2018, from http://ncete.org/flash/pdfs/NCETECaucusReport.pdf.
    Hsu, Y. L., Lee, C. H., & Kreng, V. B. (2010). The application of fuzzy delphi method and fuzzy AHP in lubricant regenerative technology selection. Expert Systems with Applications, 37(1), 419-425. DOI: 10.1016/j.eswa.2009.05.068
    Hynes, M. (2010). Middle-school teachers' understanding and teaching of the engineering design process: A look at subject matter and pedagogical content knowledge. International Journal of Technology and Design Education, 22(3), 345-360.
    Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., & Hammer, D. (2011). Infusing engineering design into high school STEM courses. Retrieved September 10, from http://ncete.org/flash/pdfs/Infusing%20Engineering%20Hynes.pdf.
    International Technology and Engineering Educators Association (ITEEA). (2004). Engineering design: a standards-based high school model course guide. Reston, VA: Author.
    International Technology and Engineering Educators Association (ITEEA). (2007). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
    Lin, K. Y., & Williams, P. J. (2017). Two-stage hands-on technology activity to develop preservice teachers' competency in applying science and mathematics concepts. International Journal of Technology and Design Education, 27(1), 89-105. DOI: 10.1007/s10798-015-9340-1
    Massachusetts Department of Elementary and Secondary Education, Massachusetts
    Mentzer, N. (2011). High school engineering and technology education integration through design challenges. Journal of STEM Teacher Education, 48(2), 103-136.
    Mentzer, N., Becker, K., & Sutton, M. (2015). Engineering design thinking: High school students performance and knowledge. Journal of Engineering Education, 104(4), 417-432. DOI: 10.1002/jee.20105
    Meyer, H. (2018). Teachers’ thoughts on student decision making during engineering design lessons. Education Sciences, 8(1), 1-11. DOI: 10.3390/educsci8010009
    National Academy of Engineering (NAE) & National Research Council(NRC). (2002). Technically Speaking: Why All Americans Need to Know More About Technology. Washington, DC: The National Academies Press. https ://doi.org/10.17226/10250
    National Research Council (NRC). (2011). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
    Perez, J. A., Dimitriadis, Y., Pozzi, F., Hernandez-Leo, D., Prieto, L, P., Persico, D., & Villagra-Sobrino, S. L. (2017). Towards teaching as design: exploring the interplay between full-lifecycle learning design tooling and teacher professional development. Computers & Education, 114, 92-116. DOI: 10.1016/j.compedu.2017.06.011
    Rose, M. A. (2015). Identifying characteristics of technology and engineering teachers striving for excellence using a modified Delphi. Journal of Technology Education, 26 (2), 2-21.
    Rowe, G. & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353-375. DOI: 10.1016/S0169-2070(99)00018-7
    Science and Technology/Engineering Curriculum Framework, 2016.
    Siew, N. M. (2017). Fostering students' scientific imagination in stem through an engineering design process. Problems of Education in the 21st Century, 75(4), 375-393.
    Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi Method for Graduate Research. Journal of Information Technology Education, 6, 1–21. Retrieved September 10, 2018, from http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ807652&lang=zh-tw&site=ehost-live.
    Sneider, C. (2012). Core ideas of engineering and technology: Understanding a framework for K-12 science education. Science Teacher, 49(5), 32-36.
    Strasser, A. (2017). Delphi method variants in information systems research: taxonomy development and application. The Electronic Journal of Business Research Methods, 15(2), 120-133.
    The Ohio State University, Columbus, OH. Retrived October 22, 2018, from https://scholarworks.iupui.edu/handle/1805/344.Galloway, P. (2008).
    Wells, J. G. (2016). PIRPOSAL Model of Integrative STEM Education: Conceptual and Pedagogical Framework for Classroom Implementation. Technology and Engineering Teacher, 75(6), 12-19.
    Wind, S. A., Alemdar, M., Lingle, J, A., Gale, J. D., & Moore, R. A. (2017). Developing an engineering design process assessment using mixed methods. Journal of Applied Measurement, 18(2), 100-121.
    Yi, S. (1997). Technology Education in Korea: Curriculum and Challenges. Journal of Technology Studies, 23 (2), 42-49.
    Zeid, I., Chin, J., Duggan, C. & Kamarthi, S.(2014). Engineering based learning: A paradigm shift for high school STEM teaching. International Journal of Engineering Education, 30 (4), 876–887.

    下載圖示
    QR CODE