研究生: |
周宜靜 Chou, Yi-Ching |
---|---|
論文名稱: |
探討建模文本對於十年級學生學習原子模型之學習成效與建模能力之影響 Investigating the Effectiveness of Modeling-based Text on Tenth Graders’ Learning Performance and Modeling Competencies about the Atomic Model |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 229 |
中文關鍵詞: | 建模歷程 、建模文本 、建模能力 、原子模型 |
英文關鍵詞: | modeling process, modeling-based text, modeling competencies, atomic model |
DOI URL: | https://doi.org/10.6345/NTNU202204938 |
論文種類: | 學術論文 |
相關次數: | 點閱:307 下載:89 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科學文本在學校科學教育中扮演著非常關鍵且重要的角色,不僅能夠幫助學生對於科學概念的學習,更是教師設計教學活動的主要依據。據此,本研究以建模歷程為架構設計了「外顯式」與「內隱式」的建模文本,並依照學生心智模式的屬性,將36位十年級學生平均分到「一般文本組」、「內隱式建模文本組」與「外顯式建模文本組」,最後,則透過各組科學文本的閱讀,探討學生對於原子模型概念、心智模式與建模能力的影響。本研究結果顯示學生在原子模型概念上,以外顯式建模文本的閱讀較有助於完整原子模型概念的學習,並能夠發展其建模能力,也能在閱讀文本之後,建立較接近科學模式的心智模式,因此,此結果也彰顯了外顯化建模歷程的效用,更顯示出外顯式建模文本的有效性,最後,也能在科學教育中提供建模科學文本編寫的參考依據。
Scientific texts played an important role in science education. They not only could help students to learn scientific concepts, but they were also the main basis for designing teaching activities by teachers. In order to investigate the impact of scientific text, this study used two modeling-based texts about the atomic model for high school students to learn the atomic models during different periods of time. One of them included explicit descriptions and representations of modeling process, and the other included implicit description of modeling processes. The participants of this study included 36 tenth-grade students from a high school in New Taipei City. The students were equally classified into three groups in which students read three different versions of scientific texts (i.e., two modeling-based texts and one regular textbook). Finally, this study investigated the effectiveness of reading three different versions of scientific texts, mental models and modeling competencies about the atomic models. The analyses results revealed that the students who read modeling-based text that including explicit modeling process not only had better learning performance about the concepts of atomic model , but they also developed better modeling competencies. Furthermore, the modeling-based text helped students construct their mental models closer to the scientific models. In sum, the results revealed the significant effects of the modeling-based text that including explicit modeling process, and it also provided a reference for the preparation of relevant textbooks.
一、 中文部分
吳明珠(2004)。從科學史中理論模型的發展暨認知學心智模式探討化學概念的理解-層析理論的模型化案例(未出版博士論文)。國立臺灣師範大學,臺北市。
林靜雯(2006)。由概念演化觀點探究不同教科書教-學序列對不同心智模式學生電學學習之影響(未出版博士論文)。國立臺灣師範大學,臺北市。
林靜雯、邱美虹(2008)。從認識論/方法論之向度初探高中生模型及建模歷程之知識。科學教育月刊,307,9-14。
邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。
邱美虹(2014)。以系統化方式進行模型與建模能力之線上教學與評量系統—探討科學課程、概念發展路徑與建模能力之研究。科技部科教發展與國際合作司計畫(計畫編號: NSC 102-2511-S-003 -006 -MY3),未出版。
邱美虹(2015)。以系統化方式進行模型與建模能力之線上教學與評量系統—探討科學課程、概念發展路徑與建模能力之研究。科技部科教發展與國際合作司計畫(計畫編號: NSC 102-2511-S-003 -006 -MY3),未出版。
邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
張志康、林靜雯、邱美虹(2009)。跨年級中學生串並聯電路心智模式的研究。科學教育月刊,317,2-17。
張志康、邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。
張淑女(2008)。以真實性評量探究建模能力。科學教育月刊,308,2-6。
教育部(2015)。十二年國民基本教育實施計畫之草案。臺北市:作者。
黃文田(2013)。探討建模教學對八年級學生酸鹼概念發展與建模能力的影響(未出版碩士論文)。國立臺灣師範大學,臺北市。
劉俊庚、邱美虹(2010)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-54。
賴俊文(2010)。探討建模教學對於八年級學生學習物質粒子概念之學習成效與建模能力之影響(未出版碩士論文)。國立臺灣師範大學,臺北市。
二、 英文部分
AAAS. (1993). Benchmarks for science literacy. New York: Oxford University Press.
Blanco, R. and Niaz, M. (1998). Baroque tower on a gothic base: a Lakatosian reconstruction of students’ and teachers’ understanding of structure of the atom. Science and Education, 7(4), 327-60.
Bliss, J. (1994). From mental models to modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Tompsett (Eds.), Learning with artificial worlds: Computer based modeling in the curriculum (pp. 27-32). Hong Kong: Graphicraft Typesetters.
Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert & C.J. Boulter (Eds.), Developing Models in Science Education (pp.119-135.). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Chambers, S. K., & Andre, T. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in science Teaching, 34(2), 107-123.
Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change. Issues in theory and practice (pp. 3-27). Netherlands: Kluwer Academic Publishers.
Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.
Coll, R. K., & Lajium, D. (2011). Modeling and the future of science learning. In Models and modeling (pp. 3-21). Springer Netherlands.
Dori, Y. J., & Kaberman, Z. (2012). Assessing high school chemistry students’ modeling sub-skills in a computerized molecular modeling learning environment. Instructional Science, 40(1), 69-91.
Duti, R. (1991). On the role of analogies and metaphor in learning science. Science Education, 75(6), 649-672.
Franco, C., de Barros, H. L., Colinvaux, D., Krapas, S., Queiroz, G., & Alves, F. (1999). From scientists’ and inventors’ minds to some scientific and technological products: relationships between theories, model, mental models and conceptions. International Journal o Science Education, 21(3), 277-291.
Gericke, N., & Hagberg, M. (2010). Conceptual incoherence as a result of the use of multiple history models in school textbooks. Research in Science Education, 40(4), 605-623.
Gericke, N., Hagberg, M., & Jorde, D. (2013). Upper secondary students’ understanding of the use of multiple models in biology textbooks—The importance of conceptual variation and incommensurability. Research in Science Education, 43(2), 755-780.
Gilbert, J. K. (1993). Models and modeling in science education. Hatfield, UK: Association for Science Education.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic Publisher.
Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 3-9.
Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science teaching, 28(9), 799-822.
Halloun, I. (1996). Schematic modelling for meaningful learning of physics. Journal of Research in Science Teaching, 33, 1019-1041.
Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011- 1026.
Hartmann, S. (1995). Models as a tool for theory construction: Some strategies of preliminary physics. Poznan Studies in the Philosophy of Science and the Humanities, 44, 49-67.
Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440-454.
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory.The physics teacher, 30(3), 141-158.
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (No. 6). Harvard University Press.
Johnson-Laird, P. N. (1994). Mental models and probabilistic thinking.Cognition, 50(1), 189-209.
Jong, J. P., Chiu, M. H., & Chung, S. L. (2015). The Use of Modeling‐Based Text to Improve Students' Modeling Competencies.Science Education, 99(5), 986-1018.
Justi, R. S. & Gilbert, J. K. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
Justi, R. S. & van Driel, J. V. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling. Research in Science Education, 35(2-3), 197-219.
Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: some challenges in the case of'the atom'. International Journal of Science Education, 22(9), 993-1009.
Justi, R., Gilbert, J. K., & Ferreira, P. F. M. (2009). The application of a ‘model of modeling’ to illustrate the importance of metavisualisation in respect of three types of representation. In J. K. Gilbert, & D. Treagust (eds.), Multiple representations of chemical education (pp. 285-307). Netherlands: Springer.
Kaberman, Z., & Dori, Y. J. (2009). Question posing, inquiry, and modeling skills of chemistry students in the case-based computerized laboratory environment. International Journal of Science and Mathematics Education, 7(3), 597-625.
Kapıcı, H. Ö., & Savaşcı-Açıkalın, F. (2015). Examination of visuals about the particulate nature of matter in Turkish middle school science textbooks. Chemistry Education Research and Practice, 16(3), 518-536.
Mansoor, N. I. A. Z., & RODRÍGUEZ, M. A. (2001). Do we have to introduce history and philosophy of science or is it already ‘inside’chemistry? Chemistry Education Research and Practice, 2(2), 159-164.
NGSS Lead States (2013). Next generation science standards: For states, by states. Washington, DC:National Academies Press.
Niaz, M., & Coştu, B. (2009). Presentation of atomic structure in Turkish general chemistry textbooks. Chemistry Education Research and Practice, 10(3), 233-240.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner and A. Stevens (Eds.), Mental models (pp.7-14). Hillasdale, NJ: Erlbaum.
Nyachwaya, J. M., & Wood, N. B. (2014). Evaluation of chemical representations in physical chemistry textbooks. Chemistry Education Research and Practice, 15(4), 720-728.
Ogborn, J. (1994). Overview : the nature of modeling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Tompsett (eds.), Learning with artificial words: computer based modeling in the curriculum (pp. 11-15). Hong Kong: Graphicraft Typesetters.
Páez, Y., Rodríguez, M. A., & Niaz, M. (2004). Los modelos atómicos desde la perspectiva de la historia y filosofía de la ciencia: un análisis de la imagen reflejada por los textos de química de bachillerato. Investigación y postgrado, 19(1), 51-77.
Portides, D. P. (2007). The relation between idealisation and approximation in scientific model construction. Science & Education, 16(7-8), 699-724.
Rodríguez, M. A., & Niaz, M. (2004). A reconstruction of structure of the atom and its implications for general physics textbooks: A history and philosophy of science perspective. Journal of Science Education and Technology, 13(3), 409-424.
Saari, H., & Viiri, J. (2003). A research‐based teaching sequence for teaching the concept of modelling to seventh‐grade students. International Journal of Science Education, 25(11), 1333-1352.
Sánchez, G., & Valcarcel, M. V. (1999). Science teachers' views and practices in planning for teaching. Journal of Research in Science Teaching, 36(4), 493.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., ... & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
Smith, M. U., & Adkison, L. R. (2010). Updating the model definition of the gene in the modern genomic era with implications for instruction. Science & Education, 19(1), 1-20.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Ünal, S., Çalik, M., Alipa¸sa, A., & Coll, R. K. (2006). A review of chemical bonding studies: Needs aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science and Technological Education, 24(2), 141-172.
van Driel, J. H. & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141-1153.
Van Driel, J. H. & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science Education. International Journal of Science Education, 24(12), 1255-1272.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive psychology, 24(4), 535-585.
Wang, C. Y., & Barrow, L. H. (2011). Characteristics and levels of sophistication: An analysis of chemistry students’ ability to think with mental models. Research in Science Education, 41(4), 561-586.
Williams, M. D., Hollan, J. D., & Stevens, A. L. (1983). Human reasoning about a simple physical system. Mental models, 131-154.