簡易檢索 / 詳目顯示

研究生: 康詩鴻
Shih-Hung, Kang
論文名稱: 金屬介電質光子晶體光子能帶結構及其應用之研究
Studies of Applications and Structures in Dielectric-Metal Photonic Crystal Band Gap
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 41
中文關鍵詞: 光子晶體金屬材料多通道可調式濾波器
英文關鍵詞: Photonic Crystal, Metal Material, Tunable Filter
論文種類: 學術論文
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體(PCs)是由具有不同折射係數之材料進行週期性或非週期性排列組合而成的光學介質,它的基本性質是每一種材料皆存在著各自的光子能隙(PBGs),當電磁波的頻率落在光子晶體之光子能隙(PBGs)時,則電磁波將無法在此光子晶體結構中傳播。本篇論文的目的是在利用金屬材料來設計具有缺陷之光子晶體濾波器並研究其特性,藉由轉移矩陣法(TMM)計算透射、吸收與反射對應入射電磁波頻率的關係。在此論文中,共研究了兩個主題。
    第一個主題是研究金屬材料的缺陷模態在一維光子晶體中是如何影響電磁波的傳播。利用金屬和介電質材料的交替排列,我們探討缺陷層厚度以及其介電常數的變化會對電磁波從光子晶體(PCs)左右射入產生何種影響,另外我們也會討論在TE或TM不同模態下改變入射角度所顯現的特性。
    第二個主題則是利用金屬和介電質材料的交替排列來設計多通道可調變式濾波器。我們發現可藉由改變缺陷層厚度及其介電常數可以調變濾波的特性,不同的入射角度在TE模態下也可做為一個濾波器調變因子。

    Photonic crystals (PCs) is made of materials having different refractive indices with periodical or non-periodical arrangement. Photonic band gaps (PBGs) is most fundamental properties of photonic crystals (PCs). When the frequency of electromagnetic wave falls on photonic band gaps (PBGs), the electromagnetic wave can not propagate in the photonic crystal structure. We use metal materials to design photonic crystal and study their properties. We also calculate the transmission, absorption and reflection of the correspondence with the frequency of the incident electromagnetic wave by the transfer matrix method (TMM). Two topics were studied in this thesis.
    The first topic is the study of metal material defect modes in one-dimensional photonic crystals. We investigate the phenomenon of electromagnetic wave propagating from left to right and from right to left. The second theme is to design a multichannel tunable filter. We found that the thickness, incident angles and dielectric constant of the defect layer can modulate the filter characteristics.

    摘要……………………………………………………………………….I Abstract…………………………………………………………………..II Acknowledgements…………………………………………………......III Contents…………………………………………………………………IV Chapter 1 Introduction 1.1 Photonic Crystals………………………………………………...1 1.2 Refractive Index of Materials……………………………………4 Chapter 2 Basic Theory and Equations 2.1 The Refractive Index of Metal…………………………………...8 2.2 Transfer Matrix Method (TMM)………………………………...9 Chapter 3 One-Way Filter by Using Defective 1D Dielectric-Metal Photonic Crystal 3.1 Introduction……………………………………………………..15 3.2 Simulation Results and Discussion……………………………..16 3.3 Conclusion……………………………………………………...25 Chapter 4 Multichannel Filter Based on the Finite Dielectric-Metal Photonic Crystal 4.1 Introduction……………………………………………………..27 4.2 Simulation Results and Discussion……………………………..28 4.3 Summary………...……………………………………………...33 Chapter 5 Conclusions…………………………………………...…34 References…………………………………………………..…………..36

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
    [2] S. John, “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    [3] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science, Vol. 282, 1476-1478, 1998.
    [4] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol. 77, 3902-3904, 2000.
    [5] Y. Zhang and B. Y. Gu, “Aperiodic photonic quantum-well structures for multiplechanneled filtering at arbitrary preassigned frequencies,” Opt. Express, Vol. 2, 5910–5915, 2004.
    [6] G. Guida, A. de Lustrac, and A. Priou, “An introduction to photonic band gap (PBG) materials,” Progress In Electromanetics Research, Vol. 41, 1-20, 2003.
    [7] A. Bruyant, G. Lérondel, P. J. Reece, and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals,” Appl. Phys. Lett., Vol. 82, 3227, 2003.

    [8] E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature, Vol. 407, 983-986, 2000.
    [9] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, Vol. 394, 251-253, 1998
    [10] L.D. Bonifacio, B.V. Lotsch, D.P. Puzzo, F. Scotognella, G.A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater., Vol. 21, 1641–1646, 2009.
    [11] C. Lopez, “Materials aspects of photonic crystals,” Adv. Mater., Vol. 15, 1679–1704, 2003.
    [12] J.E. Wijnhoven, W.L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science, Vol. 281, 802–804, 1998.
    [13] C.-J. Wu, Y.-H. Chung, and B.-J. Syu, “Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal,” PIER, Vol. 102, 81–93, 2010.
    [14] L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Zs. Bálint, V. Lousse and J.-P. Vigneron, “Living photonic crystals: Butterfly scales - Nanostructure and optical properties,” Mater. Sci. Eng. C, Vol. 27, 941-946, 2007.
    [15] F. Mika , J. Matějková-Plšková , S. Jiwajinda, P. Dechkrong and M. Shiojiri, “Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence”, Materials, Vol. 5, 754-771, 2012.
    [16] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp., Vol. 10, 509–514, 1968.
    [17] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    [18] Chan, D. L., Soljacic, M., Joannopoulos, J. D., Physical. Review., E, Vol. 74, 016609, 2006.
    [19] 薛輝, 鄭臻榮, 顧培夫, 物理學報, 58, 3983, 2009.
    [20] K. Inoue, K. Ohtaka, Photonic crystals: physics, fabrication and application (Springer-Verlag Berlin Heidelberg, New York, 2004)
    [21] C.P. Yin, T.B. Wang, J.W. Dong, Y.H. Chen, H.Z. Wang, Eur. Phys. J. B, Vol. 69, 357, 2009.
    [22] R. Srivastava, K.B. Thapa, S. Pati, S.P. Ojha, Prog. Electromagn. Res. B, Vol. 7, 133, 2008.
    [23] A.M. Steinberg, R.Y. Chiao, Phys. Rev. A, Vol. 51, 3525, 1995.
    [24] T. Hattori, N. Tsurumachi, H. Nakatsuka, “Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals,” JOSA B, Vol. 14, 2, 348-355, 1997.
    [25] H.T. Hsu, C.J. Wu, “Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negtive-index defect,” Progress In Electromagnetics Research Letters, Vol. 9, 101–107, 2009.
    [26] M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, C.M. Bowden, “Thin‐film nonlinear optical diode,” Appl. Phys., Lett. 66, 2324, 1995.
    [27] A. Banerjee, “Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures,” Progress In Electromagnetics Research Letters, Vol. 11, 129–137, 2009.
    [28] J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, “Absorption in one-dimensional metallic–dielectric photonic crystals,” J. Phys.: Condens. Matter, Vol. 16, L51, 2004.
    [29] R.C. McPhedran, N.A. Nicorovici, L.C. Botten, C.M. de Sterke, P.A. Robinson, A.A. Asatryan, “Anomalous absorptance by stacked metallic cylinders,” Optics Communications, Vol. 168, 1–4, 47–53, 1999.
    [30] Z. Wang, C.T. Chan, W. Zhang, N. Ming, P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108, 2001.
    [31] S.Y. Lin, J.G. Fleming, Z.Y. Li, I. El-Kady, R. Biswas, K.M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” JOSA B, Vol. 20, 7, 1538-1541, 2003.
    [32] A.K. Sharma, S.H. Zaidi, P.C. Logofatu, S.R.J. Brueck, “Optical and electrical properties of nanostructured metal-silicon-metal photodetectors,” IEEE J. Quantum Electron. , Vol. 38, 12, 1651-1660, 2002.
    [33] M.J. Bloemer, M. Scalora, “Transmissive properties of photonic band gaps,” Appl. Phys. Lett. 72, 1676, 1998.
    [34] A.J. Ward, J.B. Pendry, W.J. Stewart, “Photonic dispersion surfaces,” J. Phys.: Condens. Matter 7, 2217, 1995.
    [35] Y.K. Choi, Y.K. Ha, J.E. Kim, H.Y. Park, K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Optics Communications, Vol. 230, 4–6, 239–243, 2004.
    [36] A. Zamudio-Lara, J.J. Sanchez-Mondragon, M. Torres-Cisneros, J.J. Escobedo-Alatorre, C. Velasquez Ordonez, M.A. Basurto-Pensado, L.A. Aguilera-Cortes, “Characterization of metal-dielectric photonic crystals,” Optics Communications, Vol. 29, 1, 60–64, 2006.

    [37] H. Huang, Y. Huang, X. Wang, Q. Wang, X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” Photonics Technology Letters, IEEE, Vol. 16, 1, 245 – 247, 2004.
    [38] M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M. Bowden, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” Journal of Applied Physics, Vol. 83, 5, 2377, 1998.
    [39] P. Yeh: Optical Waves in Layered Madia, John Wiley & Sons, Singapore (1991), Ch. 5.
    [40] W.-H. Lin, C.-J. Wu, T.-J. Yang, S.-J. Chang, “Terahertz multichanneled filter in a superconducting photonic crystal,” Optics Express, Vol. 18, 27155-27166, 2010.
    [41] Y. T. Fang, Z. C. Liang, “Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave,” Optics Communications, Vol. 283, 10, 2102–2108, 2010.

    無法下載圖示 本全文未授權公開
    QR CODE