簡易檢索 / 詳目顯示

研究生: 江秉翰
Jiang, Bin-Han
論文名稱: 鎳超薄膜在銀(√3×√3)矽(111)上之磁性研究
Investigations of magnetic properties of Ni ultrathin films on √3×√3-Ag/Si(111)
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 鎳超薄膜磁性研究
英文關鍵詞: Ni ultrathin films, magnetic properties
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.006.2018.B04
論文種類: 學術論文
相關次數: 點閱:78下載:81
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗對不同厚度的Ni/√3×√3-Ag/Si(111)直接升溫,做成分及磁性的分析,發現在特定溫度範圍內會形成穩定態,且隨著Ni厚度增加,形成穩定態的發生溫度會延後,推測熱穩定度隨著Ni的厚度增加而提高。接著我們分別對12 ML Ni/√3×√3-Ag/Si(111)做直接升溫及間接升溫的比較,間接升溫較直接升溫延後200 K消磁,可知直接升溫有提高200 K之物理影響。再來有兩種製程,第一種是直接13及15 ML Ni/√3×√3-Ag/Si(111)上成長Ag,第二種是先將13及15 ML Ni/√3×√3-Ag/Si(111)間接升溫至550 K後才成長Ag,我們發現飽和磁化量及殘磁幾乎不隨著Ag厚度增加而改變,而第一種製程矯頑力不隨之改變,其原因為未先升 溫Ni排列不整齊,故蓋Ag不會增加表面缺陷,不會使矯頑力上升;但第二種製程隨著上層蓋Ag厚度增加,矯頑力會增加,其原因為先升溫可使上層Ni排列較整齊,蓋Ag會使表面缺陷增加,故矯頑力會上升。最後我們將所有樣品間接升溫,發現隨著退火溫度上升,飽和磁化量及殘磁在600 K前幾乎不變,其原因為上層蓋Ag會保護Ni/√3×√3-Ag/Si(111)使之結構不易被破壞;而溫度達550 K以上時,我們發現15 ML樣品的矯頑力會上升且出現峰值,推測此時Ni大量向上層Ag擴散導致樣品缺陷增加,使矯頑力最大。

    第一章 緒論 ------------------------- 4 第二章 基本原理 -----------------------7 2-1 薄膜成長 --------------------------7 2-1-1 薄膜成長模式 ---------------------7 2-1-2 影響薄膜成長的因素 ---------------8 2-2 鐵磁性物質 -------------------------9 2-2-1 磁性物質的種類 --------------------9 2-2-2 居禮溫度 ------------------------11 2-3 磁異向性 --------------------------11 2-3-1 磁異向能 ------------------------12 2-3-2 影響磁異向性的因素 ---------------13 2-4 Ni/√3×√3-Ag/Si(111)實驗模型 --------15 2-5 電子遷移(electromigration) --------18 2-6 能譜線的偏移 -----------------------19 2-6-1 電負度 --------------------------19 2-6-2 電子親和力 -----------------------19 第三章 實驗原理與儀器 ------------------20 3-1 超高真空系統 -----------------------20 3-1-1 需要超高真空系統的理由 ------------20 3-1-2 超高真空系統與抽氣設備 -------------22 3-1-3 氣體管路 -------------------------23 3-1-4 樣品清潔 -------------------------23 3-1-5 蒸鍍系統 -------------------------24 3-1-6 樣品座及溫度量測 ------------------25 3-2 歐傑電子能譜儀 ----------------------27 3-2-1 歐傑效應 -------------------------27 3-2-2 歐傑電子產生機制 ------------------28 3-2-3 半球型能量分析儀 ------------------29 3-3 歐傑訊號計算薄膜厚度 -----------------29 3-3-1 歐傑電子訊號比與膜厚之關係 ----------29 3-3-2 平均自由徑的計算 ------------------30 3-3-3 背向散射項的計算 ------------------31 3-4 低能量電子繞射儀 ---------------------31 3-4-1 低能量電子繞射儀的基本原理 ----------32 3-4-2 阻滯電場分析儀工作原理 --------------33 3-5 表面磁光柯爾效應 --------------------33 3-5-1 磁光柯爾效應 ----------------------33 3-5-2 表面磁光柯爾效應儀及其測量原理 -------34 3-5-3 表面磁光柯爾效應儀之配置 ------------36 第四章 實驗結果與討論 --------------------37 實驗流程要點 ----------------------------37 4-1 Ni成長在√3×√3-Ag/Si(111)系統之研究 ---------------38 4-1-1 Ni成長在√3×√3-Ag/Si(111)直接升溫的成份分析 -------39 (一) x ML Ni/√3×√3-Ag/Si(111)直接升溫 --------------39 (二) x ML Ni/√3×√3-Ag/Si(111)直接升溫的比較探討 ---------49 4-1-2 Ni成長在√3×√3-Ag/Si(111)直接升溫的磁性分析 -------51 (一) x ML Ni/√3×√3-Ag/Si(111)直接升溫,磁光柯爾效應(退火溫度) --------51 (二) x ML Ni/√3×√3-Ag/Si(111)直接升溫,磁光柯爾效應(樣品溫度) --------54 4-2 12 ML Ni/√3×√3-Ag/Si(111)直接升溫與間接升溫比較 ----57 4-2-1 12 ML Ni/√3×√3-Ag/Si(111)直接升溫與間接升溫成份分析 -----58 4-2-2 12 ML Ni/√3×√3-Ag/Si(111)直接升溫與間接升溫磁性分析 -----64 4-3 Ag成長在Ni/√3×√3-Ag/Si(111)上的成分與磁性分析 -----71 4-3-1 Ag成長在Ni/√3×√3-Ag/Si(111)上的成份分析 ---------72 4-3-2 Ag成長在Ni/√3×√3-Ag/Si(111)上的磁性分析 ---------82 4-4 Ag/Ni/√3×√3-Ag/Si(111)的成分與磁性熱穩定分析 -------87 4-4-1 5.4 ML Ag/x ML Ni/√3×√3-Ag/Si(111)的成份分析 --87 4-4-2 5.4 ML Ag/x ML Ni/√3×√3-Ag/Si(111)的磁性分析 --97 第五章 結論 -------------------------------------107 參考資料與文獻 ----------------------------------108

    [1]Masataka Higashiwaki, Kohei Sasaki, Akito Kuramata, Takekazu Masui and Shigenobu Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates” Appl. Phys. Lett. 100, 013504 (2012).
    [2]Chris A Mack, “Fifty Years of Moore’s Law” Semiconductor Manufacturing, IEEE Transactions on Volume: 24, Issue: 2 (2011).
    [3]Antoine Fleurence, Rainer Friedlein, Taisuke Ozaki, Hiroyuki Kawai, Ying Wang, and Yukiko Yamada-Takamura, “Experimental Evidence for Epitaxial Silicene on Diboride Thin Films” Phys. Rev. Lett. 108, 245501 (2012).
    [4]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 294, 1488 (2001).
    [5]Dmytro Pesin & Allan H. MacDonald, “Spintronics and pseudospintronics in graphene and topological insulators” Nature Materials 11, 409–416 (2012).
    [6]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [7]A. X. Gray, J. Minár, S. Ueda, P. R. Stone, Y. Yamashita, J. Fujii, J. Braun, L. Plucinski, C. M. Schneider, G. Panaccione, H. Ebert, O. D. Dubon, K. Kobayashi & C. S. Fadley, “Bulk electronic structure of the dilute magnetic semiconductor Ga1−xMnxAs through hard X-ray angle-resolved photoemission” Nature Materials 11, 957–962 (2012).
    [8]Suk Bum Chung, Hai-Jun Zhang, Xiao-Liang Qi, and Shou-Cheng Zhang, “Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures” Phys. Rev. B 84, 060510(R) (2011).
    [9]Jianbiao Dai, Jinke Tang, Huiping Xu, Leonard Spinu, Wendong Wang, Kaiying Wang, Amar Kumbhar, Min Li and Ulrike Diebold, “Characterization of the natural barriers of intergranular tunnel junctions: Cr2O3 surface layers on CrO2 nanoparticles” Appl. Phys. Lett. 77, 2840 (2000).
    [10]P. L. Taberna, S. Mitra, P. Poizot, P. Simon & J.-M. Tarascon, “High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications” Nature Materials 5, 567 - 573 (2006).
    [11]Winfried Mönch, “Metal-semiconductor contacts: electronic properties” Surface Science, Volumes 299–300, Pages 928-944 (1994).
    [12]Tudor Jenkins, “A brief history of ... semiconductors” Physics Education, Volume 40, Number 5 (2005).
    [13]Xin-Hao Li and Markus Antonietti, “Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott–Schottky heterojunctions for catalysis” Chem. Soc. Rev., 42, 6593-6604 (2013).
    [14]D. M. Schaadt, B. Feng and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
    [15]Yanbin An, Ashkan Behnam, Eric Pop and Ant Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions” Appl. Phys. Lett. 102, 013110 (2013).
    [16]Pralay K. Santra and Prashant V. Kamat, “Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%” J. Am. Chem. Soc., 134 (5), pp 2508–2511 (2012).
    [17]Fabian Johannes Klüpfel, Friedrich-Leonhard Schein, Michael Lorenz, Heiko Frenzel, Holger von Wenckstern, and Marius Grundmann, “Comparison of ZnO-Based JFET, MESFET, and MISFET” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 6 (2013).
    [18]T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, H. Iwai, “Self- aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Transactions on Electron Devices, vol. 42, pp. 915 (1995).
    [19]Hiroyuki Okino,a! Iwao Matsuda, Rei Hobara, Yoshikazu Hosomura, and Shuji Hasegawa, “In situ resistance measurements of epitaxial cobalt silicide nanowires on Si (110)” APPLIED PHYSICS LETTERS 86, 233108 (2005).
    [20]Kwan-Woo Do, Chung-Mo Yang, Ik-Su Kang, Kyung-Min Kim, Kyoung-Hum Back, Hyun-Ick Cho, Heon-Bok Lee, Sung-Ho Kong, Sung-Ho Hahm, Dae-Hyuk Kwon1, Jong-Hyun Lee and Jung-Hee Lee, “Formation of Low-Resistivity Nickel Silicide with High Temperature Stability from Atomic-Layer-Deposited Nickel Thin Film” Japanese Journal of Applied Physics, Volume 45, Part 1, Number 4B (2006).
    [21]Mon-Shu Ho, Ing-Shouh Hwang, and Tien T. Tsong, Direct Observation of Electromigration of Si Magic Cluster on Si(111) Surface, Phys. Rev. Lett. Vol. 84, 25 (2000).
    [22]Cheng-Hsun-Tony Chang, Tsu-Yi Fu, and Jyh-Shen Tsay, Interaction transfer of silicon atoms forming Co silicide for Co/ v3 × v3 R 30 ° -Ag/Si(111) and related magnetic properties, Journal of Applied Physics 117, 17B733 (2015).
    [23]F. C. Chen, Y. E. Wu, C. W. Su, and C. S. Shern, Ag-induced spin-reorientation transition of Co ultrathin films on Pt(111), PHYSICAL REVIEW B 66, 184417 (2002).
    [24]D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, Chapman and Hall, England (1992).
    [25]C. Argile, G.E. Rhead, “Adsorbed layer and thin film growth modes monitored by Auger electron spectroscopy” Surface Science Reports, Volume 10, Issues 6–7, Pages 277-356 (1989).
    [26]B. Dodson, Strain-induced surface segregation and ordering in pseudomorphic metal-alloy overlayers, Phys. Rev. B, 36, 6288-6291 (1987).
    [27]A. Taylor, J. Inst. Metals, 1950, 77, 585.
    [28]Lin-gun Liu and W. A. Bassett, J. Appl. Phys., 1973, 44, 1475.
    [29]C. R. Hubbard, H. E. Swanson, and F. A. Mauer, J. Appl. Crystallogr., 1975, 8, 45.
    [30]David Jiles, Introduction to Magnetism and Magnetic Materials 2nd ed. Chapman and Hall (1998).
    [31]D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 3rd edition, New York (1999).
    [32]J.A.C. Bland and B. Heinrich “Ultrathin Magnetic Structure I” Springer-Verlag, New York (1994).
    [33]A.E. Berkowitz and Kentaro Takano, Exchange anisotropy, Journal of Magnetism and Magnetic Materials 200, 552-570 (1999).
    [34]R. Lawrence Comstock “Introduction to magnetism and magnetic recording” John Wiley and Sons, New York (1999).
    [35]S.D. Bader, SMOKE, J. Magn. Magn. Mater. 100, 440 (1991).
    [36]M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno, Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni, Phys. Rev. B 64, 174402 (2001).
    [37]郭明憲,國立台灣師範大學碩士論文 (2007).
    [38]M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder and J.J. de Vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys., 59, 1409 (1996).
    [39]M. Sakurai, Phys. Rev. B 50, 3609 (1994).
    [40]Jeff Greeley, Manos Mavrikakis, Nature Materials 3, 810 (2004).
    [41]A. Aharoni, Introduction to the Theory of Ferromagnetism, Clareddon, Oxford (1996).
    [42]M. Wuttig and X. Liu, Ultrathin metal films, Springer, Berlin (2004).
    [43]P. Bruno, Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B 39, 865 (1989).
    [44]J. Nogues and I.K. Schuller “Exchange Bias” J. Magn. Magn. Mater. 192, 203-232 (1999).
    [45]D.J. Spence and S.P. Tear, STM studies of submonolayer coverages of Ag on Ge(111), Surface Science 398, 91-104 (1998).
    [46]Sung-Lin Tsay, Chang-Yu Kuo, Chun-Liang Lin, Wen-Chen Chen and Tsu-Yi Fu “Thermal evolution of Co islands on Ag/Si(111)- and Ag/Ge(111)- surfaces” Surface Interface Anal. 40, 1641-1645 (2008).
    [47]R.M. Feenstra and A.J. Slavin, Scanning tunneling microscopy and spectroscopy of cleaved and annealed Ge(111) surfaces, Surface Science 401, 251-252 (1991).
    [48]Agnieszka Tomaszewska, Xiao-Lan Huang, Kuo-Wei Chang, Tsu-Yi Fu, Thermal evolution of the morphology of Ni/Ag/Si(111)-√3×√3 surface, Thin Solid Films 520 (2012) 6551–6555 (2012).
    [49]Xiao-Lan Huang, Agnieszka Tomaszewska, Chi-Hao Chou, Chung-Yu Hsu, Chun-Liang Lin, Tsu-Yi Fu, Thermal evolution of Co on the coexisting Ag Ge(111)-root 3 x root 3 and Ag Ge(111)-4 x 4 phases, J Nanopart Res 14:1257 (2012).
    [50]J.E. Huheey, E.A. Keiter, and R.L. Keiter in Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition, HarperCollins, New York, USA (1993).
    [51]楊正旭,輔仁大學碩士論文 (1999).
    [52]G. Ertl and J. Kuppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
    [53]陳信良,國立台灣師範大學碩士論文 (1997).
    [54]OMICRON, ISE 10 Sputter Ion Source User’s Guide, Version 1.1 (1997).
    [55]OMICRON, Triple Evaporator EFM3T, User’s Guide, Version 2.1 (1996).
    [56]許志榮,國立台灣師範大學碩士論文 (2011).
    [57]L.E. Davis, Handbook of Auger Electron Spectroscopy, (1976).
    [58]J.S. Tsay and C.S. Shern, Chin. J. Phys. 34, 130 (1996).
    [59]R.D. Meade and D. Vanderbilt, Adatoms on Si(111) and Ge(111) Surface, Phys. Rev. B 40, 3905-3913 (1989).
    [60]C.J. Powell, Inelastic interactions of electrons with surfaces: application to Auger-electron spectroscopy and X-ray photoelectron spectroscopy, Surface Science, 299, 34 (1994).
    [61]S. Tanuma, C.J. Powell and D.R. Penn, Calculations of electron inelastic mean free paths, Surface Interface Anal. 20, 77 (1993).
    [62]M.P. Seah, Quantitative Auger electron spectroscopy and electron ranges, Surface Science, 32, 703 (1972).
    [63]R.A. Serway, C.J. Moses and C.A. Moyer, Modern Physics 3rd Belmont, USA (2005).
    [64]蔡志申,物理雙月刊,廿五卷五期,605 (2003).
    [65]何慧瑩,國立台灣師範大學博碩士論文 (2011).

    下載圖示
    QR CODE