研究生: |
張平 Ping Chang |
---|---|
論文名稱: |
有機氣體石英壓電晶體感測器的研製與應用 Preparation and Application of Piezoelectric Quartz Crystal Organic Gas Sensors |
指導教授: |
施正雄
Shih, Jeng-Shong |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 153 |
中文關鍵詞: | 感測器 、石英壓電晶體 、主成份分析 、類神經網路 |
英文關鍵詞: | ANN |
論文種類: | 學術論文 |
相關次數: | 點閱:468 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石英壓電晶體基於它的共振頻率對於對於晶體表面的質量改變具有非常好的靈敏度,因此將特定的化學物質塗佈在其電極表面作為吸附劑來偵測特定的化學物種,可設計成相當好的化學感測器。
在本論文中,Ru(III)/cryptand 首先被置備來塗佈於晶體表面上,用以偵測非極性的有機氣體。由於非極性的有機氣體因為若僅靠凡得瓦力作為吸附的作用力,將使吸附型的感測器靈敏度不佳且選擇性太差,若使用Ru(III)/cryptand作為塗佈物質則可增進感測靈敏度,且對單鍵、雙鍵、三鍵的的非極性氣體具有選擇性,其訊號強度依序為炔類>烯類>烷類。
以石英壓電晶體做為換能器最大的優點在於可隨意的更換塗佈物種而達到偵測各種分析物之目的。多頻道的化學感測器,對於選擇性不佳的情形能夠有相當程度的改善。本研究中利用主成份分析來幫助研究者在眾多塗佈物種中選擇最適合偵測目的的物質來塗佈。十四種塗佈物質被考慮用以偵測常見的有機氣體,其中 polystyrene、polyvinyl alcohol、stearic acid、fullerene、polyethylene adipate和polyvinyl pyrrolidone等塗佈物質在主成份分析中具有代表性被選擇,利用主成份分析法中的成份分數,可將變異量集中在少數的維度中,藉以辨別不同的分析物,例如有機酸、胺類化合物、醇類化合物及芳香族化合物。
類神經網路發展應用也是本研究的重點之一。利用倒傳遞類神經網路,可以幫助來辨識不同氣體分子,而且不經過人為判斷更顯得客觀而易於應用於警報系統。利用訓練組數據,經過網路的訓練學習過程,能夠找到網路參數來作辨識工作。利用多頻道石英壓電感測系統配合類神經網路除了能夠分辨不同的分析氣體之外,能更進一步的得到一個混合氣體的樣品中,可能含有的氣體成份,例如有機酸、胺類化合物、醇類化合物及芳香族化合物等。
經由類神經網路分辨氣體物種後,複回歸分析被應用在定量上,很顯然的,簡單回歸是無法計算混合有機氣體中個別的氣體濃度的,利用多頻道石英壓電偵測系統的感測訊號,配合類神經網路的辨別,最後加上複回歸做濃度的分析,可以直接偵測到混合氣體中目標氣體的濃度,誤差約在5~20﹪。
整個的實驗系統包含記錄多頻道頻率的即時多頻道系統都是在實驗室自製,可由個人電腦直接控制,直接監測頻率的變化。控制程式及倒傳遞類神經網路的程式則自行以Qbasic程式語言撰寫。主成份分析及複回歸分析則以商用統計軟體SAS計算。
In this study, piezoelectric quartz crystal detection system with a home-made computer interface was prepared and applied as a gas chromatographic detector. The oscillating frequency of quartz crystal decreases due to the adsorption of organic molecules on the coating. The home-made computer interface includes the digital counting system Altera and Intell-8255 data processing system. Software was written to control the interface and data acquisition.
The Cryptand/Ru(III) coated piezoelectric quartz crystal detection system demonstrated good selectivity and high sensitivity for olefins. The frequency shifts were in the order: 3-hexyne > 1-hexyne > cis-2-hexene > trans-2-hexene > hexane. It means those alkynes seem greater adsorption on Cryptand/Ru than alkenes and alkanes. Effects of temperature and interference of water were also investigated and discussed.
A multi-channel piezoelectric quartz crystal detection system was prepared and employed in the present study to detect various organic molecules from a flow system. By application of principal component analysis (PCA) to a data set containing piezoelectric quartz crystal frequency shifts measured in responses to detect adsorbed on special coating materials, a reduced set of orthogonal factors had been defined to provide maximum discriminating information for all analytes of interest. The data set obtained from 14 piezoelectric crystal sensors for 30 analytes and the first four factors of the reduced set explained almost 90.3% of the variation. Six interested coating materials were selected after compared the correlation between the 14 coating materials and the four factors. Propylamine, Formic acid, Propanol and Toluene can be distinguished clearly by the six-channel piezoelectric detection system without considering the retention times of the analytes.
Back propagation neural network (BPN) was used to distinguish the species in the organic mixture and multivariate linear regression analysis (MLR) was used to compute the concentration of the species. A six-channel piezoelectric sensor detecting organic molecules in static system was investigated and discussed. Amine, carboxylic acid, alcohol and aromatic molecules can easily distinguished by this system with back propagation neural network. Furthermore, the concentrations of the organic compounds were computed with about 5-20% error by multivariate linear regression analysis (MLR). Organic Mixture with amine, carboxylic acid, alcohol and aromatic molecules detecting by this way also had good qualitative and quantitative results. To have better distinguishability, changing the fault-tolerance in back propagation neural network was also investigated and discussed in this study.
1. Y. Okahata, and T. Tsuruta, Langmuir, 1988, 4, 1373-1375
2. K. Sode, and Y. Kameda, Anal. Chem. Acta, 1980, 220, 251-255
3. M. R. Deakin, and O. R. Melroy, Electrochem. Soc., 1989, 136(2), 349-352
4. U. J. Krull, R. S. Brown, Analyst, 1989, 114, 33-40
5. H. Muramatsu, Anal. Chem. Acta, 1989, 225, 339-480
6. S. M. Chang, and B. Ebert, J. Biotechnology, 1990, 16, 211-220
7. Y. Okahata, and H. Ebato, Anal. Chem., 1991, 63, 203
8. K. L. Prime, and G. M. Whitesides, Science, 1991, 25, 1164-1167
9. C. Pale-Grosdemange, and E. S. Simon, J. Am. Chem. Soc., 1991, 223, 12-20
10. H. Muramatsu, J. M. Dicks, E. Tamiya and Isao Karube, Anal. Chem., 1987, 59, 2760-2763
11. L. Bertilsson, and B. Liedberg, Langmuir, 1993, 9, 141-149
12. A. K. Bhatia, and J. L. Teixeira1993, 208, 197-205
13. M. Eray, N. S. Dogan, and L. Liu, Biosensors & Bioelectronics, 1994, 9, 343-351
14. S. V. Matveev, Biosensors & Bioelectronics, 1994, 9, 333-336
15. M. Rosa, A. Morana, and A. Riccio, Biosensors & Bioelectronics, 1994, 9, 669-675
16. N. J. Geddes, and A. S. Martin, J. Immunological Methods, 1994, 175, 149-160
17. K. Hayashi, and K. Toko Sensors and Actuators B, 1995, 23, 55-61
18. Y. Dong, and G. Feng, Sensor and Actuators B, 1995, 24-25, 62-64
19. C. Koblinger, and E. Uttenthaler, Sensor and Actuators B, 1995, 24-25, 107-112
20. K. C. Grabar, R. G. Freeman, Anal. Chem., 1995, 67, 735-743
21. D. P. Nilolelis, and C. G. Siontorou, Anal. Chem., 1995, 67, 936-944
22. W. Gopel, Biosensor & Bioelectyonics, 1995, 10, 35-39
23. Richard P. Wayne, "Chemical Instumentation", Oxford University Press, 1994
24. C. Lu and A. W. Czanderna, "Applications of Pizeoelectric Quartz Crystal Microbalance", Elsevier Science, New York, 1984
25. 金樹楨, "晶體之結構與性質", 國立編譯館, 1990
26. 吳朗, "電子陶瓷-壓電", 全欣科技圖書, 1994
27. 吳朗, "感測與轉換-原理,元件與應用", 全欣科技圖書, 1994
28. T. Ikeda, "Fundamentals of piezoelectricy", Oxford. Sci. Publ., 1990
29. L. L. Levenson, Nuovo Cimento, suppl. 2, Ser. I, 1967, 5, 231
30. M. R. Deakin and D. A. Buttry, Anal. Chem, 1989, 61, 181
31. D. A. Buttry and M. D. Word, Chem. Rev., 1992, 92, 1355
32. 張平, 碩士論文, 國立台灣師範大學化學研究所, 1996
33. W. H. King, Anal. Chem., 1964, 36, 1735
34. M. H. Mo and G. G. Guilbault, Anal. Chem., 1980, 52, 1489
35. U. Tomita and and G. G. Guilbault, Anal. Chem., 1980, 52, 1484
36. M. H. Mo and G. G. Guilbault, Anal. Chem., 1983, 55, 1830
37. A. A. Suleiman and G. G. Guilbault, Anal. Chem., 1991, 38, 541
38. F. W. Karasek and K. R. Gibbins, J. Chromatogr, 1871, 9, 535
39. F. W. Karasek, P. Guy, H. H. Hill and J. M. Tiernay, J. Chromatogr, 1976, 124, 179
40. F. W. Karasek and J. M. Tiernay, J. Chromatogr, 1974, 89, 31
41. Mandelis and Christofides. "Physis. Chemistry and Technology of Solid State Gas Sensor Devices", John Wiley & Sons, New York, 1993
42. M. T. Gomes, T. A. Rocha, Armando C. Duarte and Joao P. Oliveira, Anal. Chem., 1996, 68, 1561
43. H. Wei, L. Wang, X. Wanli, B. Zhang, C. Liu and J. Feng, Anal. Chem., 1887, 69, 699
44. M. T. S. R. Gomes, T. A. Rocha, A. C. Duarte, J. A. B. P. Oliveira, Anal. Chim. Acta., 1996, 335, 235
45. L. C. Brousseau, III, and T.E. Mallouk, Anal Chem., 1997, 69, 679
46. G. C. Silver, J. Sun, C. Nguyyen, A. S. Boutorine, E. Bisagni and C. Helene, J. Am. Chem. Soc., 1997, 119, 263
47. M. Thompson, A L. Kipling and W. C. Duncan-Hewitt, Analyst, 1991, 116, 881
48. S. Bruckenstein, Electrochimica Acta, 1985, 80, 1295
49. W. W. Schulz and W. H. King, J. Chromatogy, Sci., 1973, 11, 343
50. P. L. Konash and G. J. Bastannas, Anal. Chem., 1980, 52, 1929
51. J. M. Charlesworth, Anal. Chem., 1990, 62, 76
52. T. Nomura and M. Okuhara, Anal. Chim. Acta, 1982, 142, 281
53. S. Kurosawa, E. Tawara-Knodo and N. Knodo, Anal. Chim. Acta, 1997, 337, 1
54. 免疫檢驗試劑與生物感測技術應用訓練班講義, DBC-BC-1996-023
55. K. Nakanishi, H. Muguruma and I. Karube, Anal. Chem., 1996, 68, 1695
56. 吳宗正, 生物技術/醫藥產業透析, 1993, 2, 8
57. Y. Okahata, G. En-na and H. Ehato, Anal. Cham., 1990, 62, 1431
58. T. Nomura and K. Tsung, Anal. Chim. Acta, 1985, 182, 258
59. T. Nomura and M. Sakai, Anal. Chim, Acta., 1986, 183, 301
60. D. A. buttry, "In Electroanalytical Chemistry. A Series of Advances" A. J. Bard Ed., Marcel Dekker: New York, 1991
61. M. R. Deakin and O. Melroy, J. Electroanal. Chem., 1988, 239, 321
62. N. P. R. Andersen, P. Holst-Hansen and D. Britz, Anal. Chim. Acta, 1996, 329, 253
63. K. Pearson, "On Lines and Planes of Closet Fit of System of Points in Space", Philosophy Magazine, 1901, 6, 559-572
64. H. Hotelling, "Analysis of a Complex of Statistical Variables into Principal Components", Journal of Educational Psychology, 1933, 24, 417-441
65. H. Hotelling, "Relations Between Two Sets of Variates", Biometrika, 1936, 28, 321-337
66. 林清山, 多變項分析統計法, 東華書局, 1986
67. H. Nanto, S. Tsubakino, M. Habara, K. Kondo, T. Morita, Y. Douguchi, H. Nakazumi, R. I. Waite, Sensor and Actuators B, 1996, 34, 312-316
68. H. Nanto, M. Habara, K. Kondo, Y. Douguchi, H. Nakazumi, Sensor and Actuators B, 1996, 35-36, 183-186
69. O. Jakubowicz, and S. Ramanujam, IJCNN-90-Wash., II, 611-615, 1990
70. B. J. Kagle, IJCNN-90, II, 197-202, 1990
71. J. C. Hoskins, IJCNN-89, I, 81-86, 1989
72. T. Sorsa, IEEE Trans. On System, Man, and Cybernetics, 21, 815-825, 1991
73. D. A. Brown, Micro-computers in Civil Engineering, 6, 87-97, 1991
74. N. Gagarin, J. of Computing in Civil Engineering, 8(2), 197-200, 1994
75. F. C. Lin and M. Lin, AI Expert, Feb 1993, 36-41
76. N. Baba and M. Kozaki, IJCNN-92, I, 371-377, 1992
77. J. Kean, PC AI, Sep/Oct 1993, 45-47
78. C-H. Chu, and D. Widjaja, Decision Support Systems, 12, 13-24, 1994
79. P. Baldi, and Y. Chauvin, Neural Computation, 5, 402-418, 1993
80. A. Namphol, IJCNN-91, I, 695-700, 1991
81. 中國科學技術大學生物醫學工程跨系委員會, 神經網路及其應用, 儒林出版社, 1993
82. 王伯揚, 神經電生理學, 北京:人民教育出版社, 1982
83. F. Rosenblatt, Cornell Aernaut, Lab, Rept., 1957, 85-460-1
84. 葉怡成, 應用類神經網路, 儒林出版社, 1997
85. 鍾富昭, PIC16C71單晶片微電腦, 全華科技1995
86. 黃連進, PC多功能實驗卡實驗手冊, 第三波, 1987
87. 鄭國順, 數位邏輯, 三民書局, 1984
88. Altera Corpporation, MAX+PLUS II Getting started Ver. 5.0, July 1994