研究生: |
朱敬庭 Chu, Jing-Ting |
---|---|
論文名稱: |
應用動態光散射與顯微觀測的微流變技術發展 Microrheometry using Dynamic Light Scattering and Microscopy |
指導教授: |
黃仲仁
Huang, Jung-Ren 邱顯智 Chiu, Hsiang-Chih |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 流變學 、微流變學 、動態光散射 |
英文關鍵詞: | Rheology, Microrheology, Dynamic Light Scattering |
DOI URL: | http://doi.org/10.6345/NTNU202001472 |
論文種類: | 學術論文 |
相關次數: | 點閱:102 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們架設了兩套儀器,可以運用來量測微流變學的資訊。DLS-Microscope同時結合動態光散射與實空間(real space)的觀察,可以量測複雜流體中追蹤粒子的方均位移,藉以推得材料的機械性質。我們量測了水以及74 wt%甘油,發現它們的方均位移正比於時間,符合牛頓流體的性質,並且從方均位移所推得的黏度很接近理論值,證明了我們的儀器校準很成功。我們也用微流變學的方法量測了聚丙烯醯胺水溶液(PAM solution)的複變剪切模數(complex shear modulus),並與流變儀所量得的數據比較,發現兩者的在頻率上的趨勢相似,但在數值大小上有4~10倍的差距。若能推算出等效的追蹤粒子大小,相信能完整重複流變儀的數據。我們也量測了奈米碳管分散液(CNTs dispersion),雖然未將其轉換為微流變學。流變儀結合顯微術,讓我們可以直接觀察材料受到剪切時追蹤粒子的運動軌跡,或甚至是材料本身的結構變化。分析追蹤粒子的方均位移,也可以推得微流變學的資訊。目前試做了愛玉的實驗,數據分析仍有待處理。
We have set up two sets of instruments that can be used to measure microrheological information. DLS-Microscope combines dynamic light scattering and real space observation at the same time, which can measure the mean square displacement of tracking particles in complex fluids, thereby inferring the mechanical properties of materials. We measured water and 74 wt% glycerin and found that their mean square displacement is proportional to time, which is consistent with the properties of Newtonian fluids, and the viscosity derived from the mean square displacement is very close to the theoretical value, which proves that our instrument calibration is successful . We also measured the complex shear modulus of the PAM solution using microrheology method, and compared it with the data measured by the rheometer.We found that the both trend in frequency are similar, but there is a difference of 4 to 10 times in numerical value. If the equivalent tracking particle size can be calculated, it is believed that the rheometer data can be completely repeated. We also measured CNTs dispersion, although it was not converted to microrheology information. The rheometer combined with microscopy allows us to directly observe the movement of particles when the material is sheared, or even the changes in the material itself. Analyzing and tracking the mean square displacement of particles can also deduce microrheological information. At present, we have tried Aiyu's experiment, and the data analysis is still to be processed.
1.Squires, T.M. and T.G. Mason, Fluid Mechanics of Microrheology. Annual Review of Fluid Mechanics, 2010. 42: p. 413-438.
2.Crick, F.H.C. and A.F.W. Hughes, THE PHYSICAL PROPERTIES OF CYTOPLASM - A STUDY BY MEANS OF THE MAGNETIC PARTICLE METHOD .1. EXPERIMENTAL. Experimental Cell Research, 1950. 1(1): p. 37-80.
3.Mason, T.G. and D.A. Weitz, OPTICAL MEASUREMENTS OF FREQUENCY-DEPENDENT LINEAR VISCOELASTIC MODULI OF COMPLEX FLUIDS. Physical Review Letters, 1995. 74(7): p. 1250-1253.
4.Mason, T.G., H. Gang, and D.A. Weitz, Rheology of complex fluids measured by dynamic light scattering. Journal of Molecular Structure, 1996. 383(1-3): p. 81-90.
5.Mason, T.G., H. Gang, and D.A. Weitz, Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids. Journal of the Optical Society of America a-Optics Image Science and Vision, 1997. 14(1): p. 139-149.
6.Gittes, F., et al., Microscopic viscoelasticity: Shear moduli of soft materials determined from thermal fluctuations. Physical Review Letters, 1997. 79(17): p. 3286-3289.
7.Mason, T.G., et al., Particle tracking microrheology of complex fluids. Physical Review Letters, 1997. 79(17): p. 3282-3285.
8.Schnurr, B., et al., Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules, 1997. 30(25): p. 7781-7792.
9.Mason, T.G., Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica Acta, 2000. 39(4): p. 371-378.
10.Crocker, J.C. and D.G. Grier, Methods of digital video microscopy for colloidal studies. Journal of Colloid and Interface Science, 1996. 179(1): p. 298-310.
11.Xu, J.Y., A. Palmer, and D. Wirtz, Rheology and microrheology of semiflexible polymer solutions: Actin filament networks. Macromolecules, 1998. 31(19): p. 6486-6492.
12.Xu, J.Y., V. Viasnoff, and D. Wirtz, Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheologica Acta, 1998. 37(4): p. 387-398.
13.Apgar, J., et al., Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. Biophysical Journal, 2000. 79(2): p. 1095-1106.
14.Crocker, J.C., et al., Two-point microrheology of inhomogeneous soft materials. Physical Review Letters, 2000. 85(4): p. 888-891.
15.Levine, A.J. and T.C. Lubensky, One- and two-particle microrheology. Physical Review Letters, 2000. 85(8): p. 1774-1777.
16.Furst, E.M. and T.M. Squires, Microrheology. 2017: Oxford University Press.
17.Pipkin, A., Lectures on Viscoelasticity Theory, 1986. Springer, New York.
18.Macosko, C.W., et al., Rheology: Principles, Measurements, and Applications. 1994: VCH.
19.Morrison, F.A. and A.P.C.E.F.A. Morrison, Understanding Rheology. 2001: Oxford University Press.
20.Kubo, R., et al., Statistical Mechanics Ch. 6. 1990, North-Holland.
21.Larsen, T.H. and E.M. Furst, Microrheology of the liquid-solid transition during gelation. Physical review letters, 2008. 100(14): p. 146001.
22.Brown, W., Dynamic light scattering: the method and some applications. Vol. 49. 1993: Oxford University Press, USA.
23.Berne, B.J. and R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics. 2000: Courier Corporation.
24.Pecora, R., Dynamic light scattering: applications of photon correlation spectroscopy. 2013: Springer Science & Business Media.
25.Siegert, A., On the fluctuations in signals returned by many independently moving scatterers. 1943: Radiation Laboratory, Massachusetts Institute of Technology.
26.Dhont, J.K.G., An Introduction to Dynamics of Colloids. 1996: Elsevier.
27.Ford, N.C., BIOCHEMICAL APPLICATIONS OF LASER RAYLEIGH-SCATTERING. Chemica Scripta, 1972. 2(5): p. 193-&.
28.Van Hove, L., Correlations in space and time and Born approximation scattering in systems of interacting particles. Physical Review, 1954. 95(1): p. 249.
29.Chen, C.-J., et al., Effect of degassing on the aggregation of carbon nanotubes dispersed in water. EPL (Europhysics Letters), 2017. 120(1): p. 16004.
30.Dan Allan; Casper van der Wel; Nathan Keim, et al. “ Trackpy v0.4.2” October 16, 2019 https://doi.org/10.5281/zenodo.3492186