研究生: |
張淯媛 Jhang, Yu-Yuan |
---|---|
論文名稱: |
消渴草改善小鼠FL83B 肝臟細胞株葡萄糖攝入活性成分之鑑定 Identification of bioactive components in Ruellia tuberosa L. to improve glucose uptake in mouse FL83B hepatocytes |
指導教授: |
沈賜川
Shen, Szu-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
人類發展與家庭學系 Department of Human Development and Family Studies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 消渴草 、FL83B小鼠肝臟細胞 、胰島素阻抗 、高效能液相層析 |
英文關鍵詞: | Ruellia tuberosa L., FL83B hepatocytes, insulin resistance, High Performance Liquid Chromatography |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DHDFS.004.2018.A06 |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病已經連續數年位居國內前五大死因,平均每小時會有一人死於糖尿病,糖尿病已成為國人不可忽視的重要議題。第二型糖尿病(Type 2 diabetes mellitus, T2DM)的病因主要是體內胰島素分泌不足或細胞對胰島素無法產生反應,使葡萄糖無法進入細胞內被利用而產生高血糖的現象。消渴草(Ruellia tuberosa Linn.)屬爵床科(Acanthaceae)蘆利草屬植物,為坊間常用來治療糖尿病的傳統中草藥,文獻指出其具有消炎、止痛、消渴、利尿及解毒之功效,本實驗室先前的研究也已證實消渴草具有改善以高脂飲食及STZ誘導糖尿病大鼠之高血醣、胰島素阻抗及肝臟脂肪變性等症狀;另外也發現,消渴草之乙酸乙酯區分物具有改善有胰島素阻抗之小鼠肝臟細胞葡萄糖攝取及減少肝臟細胞脂肪堆積的能力。本研究欲進一步進行消渴草之乙酸乙酯區分物有效成分之分離及純化,以Tumor necrosis factor-alpha (TNF-α)誘導成胰島素阻抗之小鼠FL83B肝臟細胞株為篩選平臺,評估純化後之區分物對細胞葡萄糖攝取之影響,並以液相色層分析(High Performance Liquid Chromatography, HPLC)進行分析。結果顯示,消渴草之乙酸乙酯層以Sephadex LH20 gel進行劃分可得到8個區分物(fraction),經由MTT assay評估在濃度25µg/ml以下8個fraction皆不會明顯抑制細胞生長,以此濃度進行葡萄糖攝取實驗,結果發現EAF5區分物提升胰島素阻抗小鼠FL83B肝臟細胞株葡萄糖攝入之效果最佳。進一步將EAF5以MCI gel進行管柱層析,再將分離出之區分物以MTT assay評估其對細胞之毒性,接著以濃度25µg/ml區分物處理胰島素阻抗肝臟細胞進行葡萄糖攝入實驗,結果發現EAF5-5提高胰島素阻抗肝臟細胞葡萄糖攝入之效果最佳。最後以HPLC分析經由Sephadex LH20 gel、MCI gel管柱分離後之區分物組成分,透過HPLC圖譜比對,推測消渴草EAF5-5區分物之活性成分可能包括syringic acid和p-Coumaric acid等兩種酚酸以及類黃酮Cirsimaritin。
Recently, Type 2 diabetes mellitus (T2DM) is the 5th of the top ten causes of death in Taiwain, approximately one person died per hour causes by T2DM. Therefore, the treatment of diabetes is an importent issue that requires more attention. T2DM is characterized by insulin resistance, caused by insufficent production of insulin or by the ineffectiveness of insulin activity. Ruellia tuberosa L. (RTL) is an herb plant and has been used as folk medicine to cure diabetes in Asian countries for decades. RTL was reported to have anti-inflammatory, analgesic, anti-diabetes, diuretic and detoxifying effects. Previous studies in our laboratory showed that RTL may alleviate hyperglycemia, insulin resistance and liver steatosis in STZ-induced DM rats. In addition, we also found the ethyl acetate fraction from RTL improved glucose uptake and reduced lipid accumulation in TNF-α treated FL83B hepatocytes. The aim of this study was to investigate the the active compounds with improve insulin resistance potential in RTL-EA using glucose uptake assay in TNF-α treated FL83B hepatocytes. The results showed that eight sub-fractions were isolated from RTL-EA (EAF) by Sephadex LH20 gel, and no significant difference on cytotoxicity effect was observed for eight EAFs at the concentration of 25 μg/ml in FL83B cells. Moreover, EAF5 significantly enhances the uptake of 2-NBDG in TNF-α induced-insulin resistant FL83B cells. Furthermore, EAF5 was separated into five sub-fractions by MCI gel and no significant cytotoxicity effect was found for these fractions at the concentration of 25 μg/ml in FL83B cells. Among them, EAF5-5 significantly enhanced the uptake of 2-NBDG in TNF-α treated FL83B cells. According to HPLC analysis, the possible active compounds were identified includes syringic acid, p-coumaric acid and cirsimaritin.
周哲良(2016)。非洲白蔘與消渴草之成分於促進葡萄糖攝入及黃嘌呤氧化酶抑制作用之評估。台北醫學大學碩士論文,臺北市。
張瑀芳(2015)。消渴草減輕高脂飼料及Streptozotocin誘導第二型糖尿病大鼠主動脈損傷之研究。國立台灣師範大學碩士論文,臺北市。
陳柔安(2015)。消渴草粗萃物對高脂飲食及STZ誘發高血糖大鼠胰島素阻抗及肝臟解毒功能之影響。國立台灣師範大學碩士論文,臺北市。
黃郁筑(2016)。消渴草減輕小鼠FL83B肝臟細胞株胰島素阻抗及脂肪累積之研究。國立臺灣師範大學碩士論文,臺北市。
衛生福利部國民健康署(2016)。104年健康促進統計年報。取自http://www.hpa.gov.tw/Pages/List.aspx?nodeid=268
Abbas, M., Saeed, F., Anjum, F. M., Afzaal, M., Tufail, T., Bashir, M. S., Ishtiaq, A., Hussain, S. & Suleria, H. A. R. (2017). Natural polyphenols: An overview. International Journal of Food Properties, 20(8), 1689-1699.
Abdel-Moneim, A., & Fayez, H. (2015). A review on medication of diabetes mellitus and antidiabetic medicinal plants. International Journal of Bioassays, 4(06), 4002-4012.
Abdel-Moneim, A., Yousef, A. I., El-Twab, S. M. A., Reheim, E. S. A., & Ashour, M. B. (2017). Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metabolic Brain Disease, 1-8.
Afzal, K., Uzair, M., Chaudhary, B. A., Ahmad, A., Afzal, S., & Saadullah, M. (2015). Genus Ruellia: Pharmacological and phytochemical importance in ethnopharmacology. Acta Poloniae Pharmaceutica Drug Research, 72(5), 821.
Al Ati, H. Y., Fawzy, G. A., El Gamal, A. A., Khalil, A. T., El Tahir, K. E. D., Abdel-Kader, M. S., & Gilani, A. H. (2015). Phytochemical and biological evaluation of Buddleja polystachya growing in Saudi Arabia. Pakistan Journal of Pharmaceutical Sciences, 28(4), 1533-1540.
Alam, F., Islam, M. A., Kamal, M. A., & Gan, S. H. (2016). Updates on managing type 2 diabetes mellitus with natural products: towards antidiabetic drug development. Current Medicinal Chemistry, 23, 1-37.
Alam, M. A., Subhan, N., Awal, M. A., Alam, M. S., Sarder, M., Nahar, L., & Sarker, S. D. (2009). Antinociceptive and anti-inflammatory properties of Ruellia tuberosa. Pharmaceutical Biology, 47(3), 209-214.
Amalan, V., & Vijayakumar, N. (2015). Antihyperglycemic effect of p-coumaric acid on streptozotocin induced diabetic rats. Indian Journal of Applied Research, 5, 10-13.
American Diabetes Association. (2018). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care, 41(Supplement 1), S13-S27.
American Diabetes Association. (2018). 8. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2018. Diabetes care, 41(Suppl 1), S73.
An, H., & He, L. (2016). Current understanding of metformin effect on the control of hyperglycemia in diabetes. Journal of Endocrinology, 228(3), R97-R106.
Ananthakrishnan, M., & Doss, V. A. (2013). Effect of 50% Hydro-Ethanolic Leaf Extracts of Ruellia Tuberosa L. and Dipteracanthus Patulus (Jacq.) on Lipid Profile in Alloxan Induced Diabetic Rats. International Journal of Preventive Medicine, 4(7), 744.
Arirudran, B., Saraswathy, A., & Krishnamurthy, V. (2011). Antimicrobial activity of Ruellia tuberosa L. (whole plant). Pharmacognosy Journal, 3(23), 91-95.
Bag, A., & Chattopadhyay, R. R. (2017). Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p‐coumaric acid against food‐borne bacteria Bacillus cereus and Salmonella typhimurium. Letters in Applied Microbiology, 65(5), 366-372.
Bahuguna, A., Khan, I., Bajpai, V. K., & Kang, S. C. (2017). MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh Journal of Pharmacology, 12(2), 8-2017.
Beer, M. F., Frank, F. M., Germán Elso, O., Ernesto Bivona, A., Cerny, N., Giberti, G., Luis Malchiodi E., Susana Martino V., Alonso M. R., Patricia Sülsen V. & Cazorla, S. I. (2016). Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharmaceutical Biology, 54(10), 2188-2195.
Cariou, B., Charbonnel, B., & Staels, B. (2012). Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends in Endocrinology & Metabolism, 23(5), 205-215.
Chen, F. A., Wu, A. B., Shieh, P., Kuo, D. H., & Hsieh, C. Y. (2006). Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chemistry, 94(1), 14-18.
Chen, L., Chen, R., Wang, H., & Liang, F. (2015). Mechanisms linking inflammation to insulin resistance. International Journal of Endocrinology, 2015,2015, 508409.
Chiu N.Y., Chang K. H. (1995).The illustrated medicinal plants of Taiwan (2). Mingtong Medical Journal. 226: 1.
Chothani, D. L., Patel, M. B., Mishra, S. H., & Vaghasiya, H. U. (2010). Review on Ruellia tuberosa (cracker plant). Pharmacognosy Journal, 2(12), 506-512.
Ciangherotti, C., Cegarre, J., Usubillaga, A., Rodríguez, M., Bermúdez, J., Mata, R., & Israel, A. (2016). Evaluación fitoquímica preliminar y actividad hipoglicemiante aguda del extracto acuoso de la raíz de Ruellia tuberosa L. en ratas con diabetes experimental. Revista Facultad de Farmacia, 79(1),36-44
Cikman, O., Soylemez, O., Ozkan, O. F., Kiraz, H. A., Sayar, I., Ademoglu, S., Taysi S. & Karaayvaz, M. (2015). Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine–Induced Acute Pancreatitis: An Experimental Study on Rats. International Surgery, 100(5), 891-896.
Cooke, D. W., & Plotnick, L. (2008). Type 1 diabetes mellitus in pediatrics. Pediatrics in Review, 29(11), 374-84.
De Meyts, P., & Whittaker, J. (2002). Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery, 1(10), 769-783.
DeFronzo, R. A., Tobin, J. D., & Andres, R. (1979). Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology-Gastrointestinal and Liver Physiology, 237(3), G214-G223.
Eckel, R. H., Kahn, S. E., Ferrannini, E., Goldfine, A. B., Nathan, D. M., Schwartz, M. W., Smith, R. J. & Smith, S. R. (2011). Obesity and type 2 diabetes: what can be unified and what needs to be individualized? The Journal of Clinical Endocrinology & Metabolism, 96(6), 1654-1663.
Egawa, T., Tsuda, S., Oshima, R., Goto, A., Ma, X., Goto, K., & Hayashi, T. (2017). Regulatory Mechanism of Skeletal Muscle Glucose Transport by Phenolic Acids. In Phenolic Compounds-Biological Activity. InTech. Retrieved from https://www.intechopen.com/books/citations/phenolic-compounds-biological-activity.
Elavarasi, S., Saravanan, K., & Renuka, C. (2013). A Systematic Review on Medicinal Plants Used to Treat Diabetes Mel-litus. International Journal of Pharmaceutical, Chemical and Biological Sciences, 3(3), 983-992.
El-Beshbishy, H. A., & Bahashwan, S. A. (2012). Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study. Toxicology and Industrial Health, 28(1), 42-50.
Ezuruike, U. F., & Prieto, J. M. (2014). The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. Journal of Ethnopharmacology, 155(2), 857-924.
Folgmann, D. (2016). Optimized Protocol for Measuring 2-NBDG Uptake as a Cellular Marker of Glycolytic Demand (Undergraduate Honors Theses). Retrieved from http://scholarworks.uark.edu/bmeguht/31/
Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: from mechanisms of action to therapies. Cell metabolism, 20(6), 953-966.
Fullerton, M. D., Galic, S., Marcinko, K., Sikkema, S., Pulinilkunnil, T., Chen, Z. P., O'Neill H. M., Ford R. J., Palanivel R, O'Brien M, Macaulay S. L., Schertzer J. D., Dyck J. R., van Denderen B. J., Kemp B. E., Steinberg G. R. & Hardie, D. G. (2013). Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine, 19(12), 1649-1654.
Hafizur, R. M., Kabir, N., & Chishti, S. (2011). Modulation of pancreatic β-cells in neonatally streptozotocin-induced type 2 diabetic rats by the ethanolic extract of Momordica charantia fruit pulp. Natural product research, 25(4), 353-367.
Hale, L. J., & Coward, R. J. (2013). Insulin signalling to the kidney in health and disease. Clinical Science, 124(6), 351-370.
Helal, E. G., Abou-Aouf, N., & Khattab, S. M. (2015). A Possible Hypoglycemic and Antioxidant Effect of Herbal Mixture Extraction in Diabetic Rats. The Egyptian Journal of Hospital Medicine, 58, 109-119.
Huang, D. W., Chang, W. C., Wu, J. S. B., Shih, R. W., & Shen, S. C. (2016). Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutrition Research, 36(2), 150-160.
International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium:
International Diabetes Federation, 2017. http://www.diabetesatlas.org
Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., & Sritularak, B. (2017). α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum. Revista Brasileira de Farmacognosia, 27(4), 480-487.
Jones, A. G., & Hattersley, A. T. (2013). The clinical utility of C‐peptide measurement in the care of patients with diabetes. Diabetic Medicine, 30(7), 803-817.
Kain, V., Kapadia, B., Viswakarma, N., Seshadri, S., Prajapati, B., Jena, P. K., Teja Meda C. L., Subramanian M., Kaimal Suraj S., Kumar S. T., Thimmapaya B., Reddy J. K., Parsa K. V., Misra P. & Babu, P. P. (2015). Co-activator binding protein PIMT mediates TNF-α induced insulin resistance in skeletal muscle via the transcriptional down-regulation of MEF2A and GLUT4. Scientific Reports, 5, 15197.
Kalra, S. (2014). Alpha glucosidase inhibitors. The Journal of the Pakistan Medical Association, 64(4), 474-476.
Leclercq, I. A., Morais, A. D. S., Schroyen, B., Van Hul, N., & Geerts, A. (2007). Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. Journal of Hepatology, 47(1), 142-156.
Liao, C. C., Ou, T. T., Wu, C. H., & Wang, C. J. (2013). Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. Journal of Agricultural and Food Chemistry, 61(46), 11082-11088.
Lin, C. F., Huang, Y. L., Cheng, L. Y., Sheu, S. J., & Chen, C. C. (2006). Bioactive flavonoids from Ruellia tuberosa. The Journal of Chinese Medicine, 17(3), 103-109.
Mamun-or-Rashid, A. N. M., Hossain, M. S., Naim Hassan, B., Kumar Dash, M., Sapon, A., & Sen, M. K. (2014). A review on medicinal plants with antidiabetic activity. Journal of Pharmacognosy and Phytochemistry, 3(4), 149-159.
Manikandan, A., Arokia, V., & Doss, D. (2010). Effect of 50% Hydroethanolic Leaf Extracts of Ruellia tuberosa L. and Dipteracanthus patulus (Jacq.) on Non-enzymic Antioxidants and other Biochemical Parameters in Liver, Kidney, Serum of Alloxan Induced Diabetic Swiss Albino Rats. Journal of Biomedical Science, 2(3), 190-201.
Massaro, M., Scoditti, E., Pellegrino, M., Carluccio, M. A., Calabriso, N., Wabitsch, M., Storelli C.4, Wright M. & De Caterina, R. (2016). Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR) α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes. Pharmacological Research, 107, 125-136.
Mayfield, J. (1998). Diagnosis and classification of diabetes mellitus: new criteria. American Family Physician, 58(6), 1355.
Mikiewicz, D., Bierczyńska-Krzysik, A., Sobolewska, A., Stadnik, D., Bogiel, M., Pawłowska, M., Wójtowicz-Krawiec, A., Baran, P. A., Łukasiewicz, N., Romanik-Chruścielewska, A., Stadnik, J., Borowicz, P., Płucienniczak, A. & Sokołowska, I. (2017). Soluble insulin analogs combining rapid-and long-acting hypoglycemic properties–From an efficient E. coli expression system to a pharmaceutical formulation. PloS one, 12(3), e0172600.
Minh, T. N., Khang, D. T., Tuyen, P. T., Anh, L. H., Quan, N. V., Ha, P. T., Toan N. P., Elzaawely A. A., Minh L. T. & Xuan, T. D. (2016). Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids. Antioxidants, 5(3), 31.
Mohan, V. R., & Vasantha, K. (2014). GC-MS analysis of bioactive components of tubers of Ruellia tuberosa L. (Acanthaceae). American Journal of Phytomedicine and Clinical Therapeutics, 2(2), 209-216.
Muthukumaran, J., Srinivasan, S., Venkatesan, R. S., Ramachandran, V., & Muruganathan, U. (2013). Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. Journal of Acute Disease, 2(4), 304-309.
Nasri, H., Shirzad, H., Baradaran, A., & Rafieian-kopaei, M. (2015). Antioxidant plants and diabetes mellitus. Journal of Research in Medical Sciences: the Official Journal of Isfahan University of Medical Sciences, 20(5), 491.
NCD Risk Factor Collaboration. (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. The Lancet, 387(10026), 1377-1396.
Ong, K. W., Hsu, A., & Tan, B. K. H. (2013). Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology, 85(9), 1341-1351.
Phakeovilay, C., Disadee, W., Sahakitpichan, P., Sitthimonchai, S., Kittakoop, P., Ruchirawat, S., & Kanchanapoom, T. (2013). Phenylethanoid and flavone glycosides from Ruellia tuberosa L. Journal of Natural Medicines, 67(1), 228-233.
Pueblos, K. R. S., Lagare, J. P. B., Tapales, R. V. P. P., & Quimque, M. T. J. (2015). In Vitro Anthelmintic Activity Evaluation of the Aerial Part of Ruellia tuberosa Linn. Against Eudrilus eugeniae. Procedia Chemistry, 16, 570-577.
Rajan, M., Kishor Kumar, V., Satheesh Kumar, P., Swathi, K. R., & Haritha, S. (2012). Antidiabetic, antihyperlipidaemic and hepatoprotective activity of methanolic extract of Ruellia tuberosa Linn leaves in normal and alloxan induced diabetic rats. Journal of Chemical and Pharmaceutical Research, 4(6), 2860-2868.
Ratna Wulan, D., Priyo Utomo, E., & Mahdi, C. (2015). Antidiabetic Activity of Ruellia tuberosa L., Role of α-Amylase Inhibitor: In Silico, In Vitro, and In Vivo Approaches. Biochemistry Research International, vol. 2015, Article ID 349261, 9 pages, 2015.
Riss, T. L., Moravec, R. A., Niles, A. L., et al. (2016). Cell viability assays. 2013 [Updated 2016 Jul 1]. In: G. S. Sittampalam, N. P. Coussens, K. Brimacombe, et al., (Eds.). Assay guidance manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
Samy, M. N., Sugimoto, S., Matsunami, K., Otsuka, H., & Kamel, M. S. (2015). Chemical constituents and biological activities of genus Ruellia. International Journal of Pharmacognosy, 2(6), 270-279.
Shahwar, D., Ullah, S., Ahmad, M., Ullah, S., Ahmad, N., & Akmal Khan, M. (2011). Hypoglycemic activity of Ruellia tuberosa linn (Acanthaceae) in normal and alloxan-induced diabetic rabbits. Iranian Journal of Pharmaceutical Sciences, 7(2), 107-115.
Sharma, S. H., Chellappan, D. R., Chinnaswamy, P., & Nagarajan, S. (2017). Protective effect of p-coumaric acid against 1, 2 dimethylhydrazine induced colonic preneoplastic lesions in experimental rats. Biomedicine & Pharmacotherapy, 94, 577-588.
Singab, A. N., Youssef, F. S., & Ashour, M. L. (2014). Medicinal plants with potential antidiabetic activity and their assessment. Medicinal and Aromatic Plant, 3(151), 2167-0412.
Sola, D., Rossi, L., Schianca, G. P. C., Maffioli, P., Bigliocca, M., Mella, R., Corlianò, F., Fra, G. P., Bartoli, E. & Derosa, G. (2015). Sulfonylureas and their use in clinical practice. Archives of Medical Science: AMS, 11(4), 840.
Srivastava, J. K., Dubey, P., Singh, S., Bhat, H. R., Kumawat, M. K., & Singh, U. P. (2015). Discovery of novel 1, 3, 5-triazine-thiazolidine-2, 4-diones as dipeptidyl peptidase-4 inhibitors with antibacterial activity targeting the S1 pocket for the treatment of type 2 diabetes. RSC Advances, 5(19), 14095-14102.
Sun, Q., Wedick, N. M., Tworoger, S. S., Pan, A., Townsend, M. K., Cassidy, A., Franke A. A., Rimm E. B., Hu F. B. & van Dam, R. M. (2015). Urinary excretion of select dietary polyphenol metabolites is associated with a lower risk of type 2 diabetes in proximate but not remote follow-up in a prospective investigation in 2 cohorts of US women. The Journal of Nutrition, 145(6), 1280-1288.
Suseela, L., & Prema, S. (2007). Pharmacognostic study on Ruellia tuberosa. Journal of Medicinal and Aromatic Plant Sciences, 29, 117-122.
Vijayakumar, M. V., & Bhat, M. K. (2008). Hypoglycemic effect of a novel dialysed fenugreek seeds extract is sustainable and is mediated, in part, by the activation of hepatic enzymes. Phytotherapy Research, 22(4), 500-505.
Vinayagam, R., Jayachandran, M., & Xu, B. (2016). Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytotherapy Research, 30(2), 184-199.
Wang, X., Liu, Q., Zhu, H., Wang, H., Kang, J., Shen, Z., & Chen, R. (2017). Flavanols from the Camellia sinensis var. assamica and their hypoglycemic and hypolipidemic activities. Acta Pharmaceutica Sinica B, 7(3), 342-346.
Wang, Z., Wang, J., & Chan, P. (2013). Treating type 2 diabetes mellitus with traditional Chinese and Indian medicinal herbs. Evidence-Based Complementary and Alternative Medicine, 2013.
Webber, L., Kilpi, F., Marsh, T., Rtveladze, K., Brown, M., & McPherson, K. (2012). High rates of obesity and non-communicable diseases predicted across Latin America. PloS one, 7(8), e39589.
Wojdyło, A., Nowicka, P., Carbonell-Barrachina, Á. A., & Hernández, F. (2016). Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 25, 421-432.
World Health Organization. (2016). GLOBAL REPORT ON DIABETES. Retrieved from http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf
Yamamoto, N., Ueda‐Wakagi, M., Sato, T., Kawasaki, K., Sawada, K., Kawabata, K., Akagawa, M. & Ashida, H. (2011). Measurement of glucose uptake in cultured cells. Current Protocols in Pharmacology, Chapter 12:Unit 12.14 1-12(14):22.
Yoon, S. A., Kang, S. I., Shin, H. S., Kang, S. W., Kim, J. H., Ko, H. C., & Kim, S. J. (2013). p-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochemical and Biophysical Research Communications, 432(4), 553-557.
Zheng, L., Kilpi, F., Marsh, T., Rtveladze, K., Brown, M., & McPherson, K. (2012). High rates of obesity and non-communicable diseases predicted across Latin America. PloS one, 7(8), e39589.
Zou, C., Wang, Y., & Shen, Z. (2005). 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Journal of Biochemical and Biophysical Methods, 64(3), 207-215.