簡易檢索 / 詳目顯示

研究生: 彭成基
Chen-Chi Peng
論文名稱: 低溫水溶液法合成氧化鋅奈米柱之發光二極體
Sythesis of ZnO Nanorods Light Emitting Diode by Low-Temperature Aqueous Solution Method
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化鋅奈米柱發光二極體
英文關鍵詞: ZnO, nanorods, LEDs
論文種類: 學術論文
相關次數: 點閱:268下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係以水溶液法於p型矽晶圓基材上,合成出高均向性一維氧化鋅奈米柱陣列,接著利用半導體相關製程技術完成發光二極體(LED)元件。
本實驗以硝酸鋅(C4H6O4Zn・2H2O)與四氮六甲環(C6H12N4)濃度1:1之混和溶液,固定其反應時間與溫度分別為6小時及90ºC,並且以不同之溶液濃度、晶種、基材等為反應參數,合成出高品質之一維氧化鋅奈米柱陣列,用以探討氧化鋅奈米柱之表面形態與奈米柱陣列之發光特性。
以x光繞射儀(XRD)與場發射掃描式電子顯微鏡(FESEM)分別鑑定氧化鋅晶體結構與表面形態,於不同溶液濃度與成長時間下所製備出之氧化鋅奈米柱陣列具有不同之長寬比與成核成長密度。光激發光光譜(PL)顯示氧化鋅奈米柱具有紫外光與寬頻之可見光發光區域,紫外光區相對於綠光區之比值將隨著溶液濃度之增加而成正比之現象;進一步計算上述放射光譜數據之CIE色度座標,發現座標位於偏藍之白光區域。
於電性量測方面,首先使用半導體相關製程完成此p-n異質接合(hetrojunction)之氧化鋅奈米柱發光二極體,此元件經過電流-電壓特性曲線之量測,觀察其起始電壓(turn-on voltage)為3.4 V,符合發光二極體之特性曲線。
相較於傳統塊材(bulk)與量子井(quantum well)結構,奈米結構具有較高之內部量子效率(Internal quantum efficiency)與窄頻譜特性,對於提高元件效率、降低起始電流具有正面助益。在此能源議題受重視之際,高品質之氧化鋅奈米柱發光二極體乃為重要研究主題之一。

In this study, the aqueous solution method was employed to synthesize one-dimensional well-aligned ZnO nanorod array on p-type Si wafer, and the ZnO nanorod light emitting diode were fabricated by semiconductor technologies.
The optimized quality and aspect ratio of ZnO nanorod array was obtained by the mixed aqueous solution (Zinc Nitrate Hexahydrate: Hexamethylenetetramine = 1:1), fixed the reaction time and temperature in 6 hours and 90ºC, respectively. We investigated the nanorods’ surface morphology and the characteristics of photoluminescence with some factors which including reactants concentration, different seeds and substrates.
The crystal structure and growth orientation of the ZnO nanorods were characterized by x-ray diffraction and FESEM analysis, respectively. The various of aspect ratio and density of ZnO nanorods were obtained with different reactants concentration and growth time. Photoluminescence spectra of ZnO nanorods reveal UV and visible emission. The ratio of UV and visible light were increased as the reactants concentration increased and the bluish white region were observed on CIE Chromaticity Diagram.
I-V curve measurements of the ZnO nanorods light emitting diode that conform to the typical current-voltage characteristics, the turn on voltage is 3.4 V.
Compared with bulk and quantum well structure, nano-structures possesses higher internal quantum efficiency and narrow full width at half maximum (FWHM), therefore, it’s useful to enhance the device efficiency and reduce the threshold current. On the century of inadequate energy sources, high quality ZnO nanorods light emitting diode is one of important topics.

第一章 緒論....................................1 第二章 文獻回顧與理論基礎........................4 2-1奈米材料.............................4 2-1-1表面效應 (surface area effect) .5 2-1-2量子侷限效應 (quantum confinement effect)…7 2-1-3一維奈米材料成長機制………………………………....9 2-2氧化鋅材料......................................11 2-2-1氧化鋅之性質與特性.........................11 2-2-2氧化鋅之發光機制...........................13 2-2-3氧化鋅奈米結構之合成方法....................16 2-2-4氧化鋅之應用...............................17 2-3水溶液法合成一維氧化鋅奈米結構.....................20 2-3-1一維氧化鋅奈米結構之演進與理論...............20 2-3-2單軸成長機制...............................26 2-4研究動機........................................27 第三章 實驗步驟與分析方法...................................29 3-1實驗架構...............................................29 3-2化學藥品........................................32 3-3實驗步驟........................................32 3-3-1異質晶種層 (Heterogeneous seed layer) 之製備.30 3-3-2同質晶種層 (Homogeneous seed layer) 之製備...33 3-3-3水溶液法合成氧化鋅奈米柱.....................33 3-3-4氧化鋅奈米柱之發光二極體元件結構設計.....................34 3-4 分析儀器與方法..................................35 3-4-1 x光繞射儀 (x-ray diffraction; XRD)........36 3-4-2場發射掃描式電子顯微鏡 (field emission scanning electron microscope; FESEM)......................40 3-4-3光激發光光譜儀 (photoluminescence; PL).....42 3-4-4 CIE色度座標圖.............................45 3-4-5半導體量測分析儀器...........................47 第四章 結果與討論...........................................48 4-1 SEM分析...............................................48 4-2 XRD分析...............................................58 4-3 PL分析.........................................59 4-4 CIE色度座標圖...................................63 4-5電性分析........................................64 第五章 結論.......................................................67

[1] Numerical Data and Functional Relationships in Scirnce and
Technology, Vol.22: Subvolume a. Intrinsic Properties of Group Ⅳ
Elements and Ⅲ-Ⅴ, Ⅱ-Ⅵ and Ⅰ-Ⅶ Compounds (1987).
[2] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu and T. Yao, J.
Appl. Phys. 84, 3912 (1998).
[3] H. Ohta, H. Hosono, ”Transparent oxide optoelectronics”, Materials Today, June 2004, p. 42.
[4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
[5] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno and S. F. Chichibu, Jpn. J. Appl. Phys. 44, 643 (2005).
[6] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht and M. A.
El-Sayed, Pure. Appl. Chem. 74, 1675 (2002).
[7] M. B. Mohamed, C. Burda and M. A. El-Sayed, Nano Lett. 1, 589 (2001).
[8] 張立德,奈米材料與奈米結構,滄海書局
[9] 莊萬發編撰,超微粒子理論應用,復漢出版社
[10] 王崇人,科學發展 6, 354 (2002)
[11] M. Law, H. Kind, B. Messer, F. Kim and P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002).
[12] H. Kind, H. Yang, B. Messer, M. Law and P. Yang, Adv. Mater. 14,
158 (2002).
[13] M. H. Huang, Y. Wu, H. Feick, N. Tran and P. Yang, Adv. Mater. 13, 113 (2001).
[14] R. Rosseti, S. Nakahara and L. E. Brus, J. Chem. Phys. 79, 1086 (1983).
[15] A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).
[16] A. P. Alivisatos, Science 271, 933 (1995).
[17] Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).
[18] O. Madelung, Landolt-Bornstein, Numerical Data and Functional
Relationship in Science and Technology, Vol. III-17: Semiconductors,
Springer, Berlin (1998).
[19] S. S. Brenner and G. W. Sears, Acta. Metallm. Sin. 4 (1956).
[20] S. Datta, Electronic Transport in Mesoscopic, Cambridge University Press, 1995.
[21] R. S. Wanger and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
[22] Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
[23] P. Yang and C. M. Lieber, Science, 273, 1836 (1996).
[24] W. E. Buhro, T. J. Trentler and K. M. Hickman, Science 270, 1791 (1995).
[25] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo and Y. Q. Mao, Appl. Phys. Lett. 75, 2455 (1999).
[26] C. Y. Nam, D. Tham and J. E. Fischer, Appl. Phys. Lett. 85, 5676 (2004).
[27] C. M. Park, Y. S. Park, H. Im and T. W. Kang, Nanotechnology,
17, 952 (2006).
[28] J. W. Kang and H. J. Hwang, Nanotechnology 14, 402 (2003).
[29] Z. L. Wang, R. P. Gao, J. L. Gole and J. D. Stout, Adv. Mater. 12, 1938 (2000).
[30] W. B. Fan, L. J. Qi, H. T. Sun, Y. Y. Zhao and M. Lu, Nanotechnology 17, 1878 (2006).
[31] Z. Liu and Y. Bando, Adv. Mater. 15, 305 (2003).
[32] J. P. Singh, T. Karabacak, T. M. Lu, G. C. Wang and N. Koratkar, Appl. Phys. Lett. 85, 3226 (2004).
[33] M. Barbic, J. J. Mock, D. R. Smith and S. Schultz, J. Appl. Phys. 91, 9341 (2002).
[34] Y. Gao, H. Niu, C. Zeng and Q. Chen, Chem. Phys. Lett. 367, 141 (2003).
[35] Pearson’s Handbook of Crystallographic Data, 4795
[36] http://oxide.rlem.titech.ac.jp/kawasaki/ZnO/ZnO.htm
[37] Numerical Data and Functional Relationships in Scirnce and
Technology./v.22, Subvolume a. Intrinsic Properties of Group Ⅳ
Elements and Ⅲ-Ⅴ, Ⅱ-Ⅵ and Ⅰ-Ⅶ Compounds.,
Berlin:/Springer-Verlag,/ 1987.
[38] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, J. Appl.
Phys. 84, 3912 (1998).
[39] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo,
H. Koinuma and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
[40] D. C. Reynolds, D. C. Lock and B. Jogai, Solid State Commun. 99, 873 (1996).
[41] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[42] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. G. Kong, J. Lumin. 99, 149 (2002).
[43] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and
J. A. Voigt, J. Appl. Phys. 79, 7983 (1996).
[44] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu and Q. Li, Nucl. Instrum. Meth. B. 169, 59 (2000).
[45] Z. Zhou, W. Peng, S. Ke and H. Deng, J. Mater. Process. Tech. 89, 415 (1999).
[46] K. Haga, ”Zinc Oxide Semiconductor Material”, US. Patent, 6936188, 2005.
[47] B. D. Yao, Y. F. Chan and N. Wanga, Appl. Phys. Lett. 81, 4, 22 (2002).
[48] S. Y. Li, C. Y. Lee and T. Y. Tseng, J. Cryst. Growth 247, 357 (2003).
[49] B. P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, Appl. Phys. Lett. 83, 8, 1635 (2003).
[50] M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shen, Chem. Phys. Lett. 363, 123 (2002).
[51] Y. C. Wang, I. C. Leu and M. H. Hon, Electrochem. Solid. ST. 5, 4, C53 (2002).
[52] H. Nagayama, H. Honda and H. Kawahara, J. Electrochem. Soc. 135, 2013 (1988).
[53] S. Deki, Y. Aoi, O. Hiroi and A. Kajinami, Chem. Lett. 25, 433 (1996).
[54] S. Yamabi and H. Imai, Chem. Lett. 30, 220 (2001).
[55] S. Yamabi and H. Imai, Chem. Lett. 14, 609 (2002).
[56] K. Tsukuma, T. Akiyama and H. Imai, J. Non-Cryst. Solids. 210, 48 (1997).
[57] M. Abe and Y. Tamaura, Jpn. J. Appl. Phys. 22, L511 (1983).
[58] M. Izaki and O. Shinohara, Adv. Mater. 13, 142 (2001).
[59] Q. Li, V. Kumar, Y. Li, Haitao Zhang, T. J. Marks and Robert P. H. Chang, Chem. Mater. 17, 1001 (2005).
[60] W. W. Wenas, A. Setiawan, F. Adriyanto and H. Sangian, IEEE. 99, 322 (1999).
[61] D. C. Look, Mater. Sci. Eng. B. 80, 383 (2001).
[62] H. Ohta, M. Orita and M. Hirano. J. Appl. Phys. 89, 5720 (2001).
[63] H. Kawazoe, M. Tasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389, 939 (1997).
[64] A. Kudo, H. Yanagi, H. Hosono and H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998).
[65] Y. R. Ryu, W. J. Kim and H. W. White, J. Cryst. Growth 219, 419 (2000).
[66] H. Nagayama, H. Honda and H. Kawahara, J. Electrochem. Soc. 135, 2013 (1998).
[67] Deki, Y. Aoi, O. Hiroi and A. Kajinami, Chem. Lett. 25, 433 (1996).
[68] S.Yamabi and H.Imai, Chem. Lett. 30, 220 (2001).
[69] S.Yamabi and H.Imai, Chem. Lett. 14, 609 (2002).
[70] K. Tsukuma, T. Akiyama and Imai, J. Non-Cryst. Solid. 210, 48 (1997).
[71] M. Izaki and O. Shinohara, Adv. Mater. 13, 142 (2001).
[72] L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 113, 2826 (1991).
[73] C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002).
[74] B. Liu and H. C. Zeng, Langmuir 20, 4196 (2004).
[75] X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li, Mater. Chem. Phys. 78, 99 (2002).
[76] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, J. Phys. Chem. B. 105, 3350 (2001).
[77] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, Chem. Mater. 13, 4395 (2001).
[78] L. Vayssieres, Adv. Mater. 15, 464 (2003).
[79] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie and M. J. Mcdermott, J.
Am. Chem. Soc.124, 12954 (2002).
[80] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y.
Zhang, R. J. Saykally and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).
[81] Y. Tak and K. Yong, J. Phys. Chem. B. 109, 19263 (2005).
[82] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, J. Mater.
Chem. 14, 2575 (2004).
[83] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, J. Mater.
Chem. 14, 2575 (2004).
[84] R. W. Nosker, P. Mark and J. D. Levine, Surf. Sci. 19, 291 (1970).
[85] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang and S. J. Park, Adv. Mater. 18, 2720 (2006).
[86] J. Turkevitch, P. C. Stevenson and Hillier, J. Discuss. Faraday Soc. 11, 55 (1951).
[87] 鄧昌蔚,科學教育月刊,246期,32(民91)。
[88] 林金明,化學發光基礎理論與應用;化學工業出版社:台北,民71。
[89] 三思科學电子月刊,29期,30(民94)。
[90] 染料客主型強誘電性液晶元件色彩性之探討,光電科技,2
(民94)。
[91] 陳宏步,照明原理;機械月刊叢書:台北,民68。
[92] 林益山,白光發光二極體用之具釔鋁石榴石結構螢光粉合成及其特性分析;台灣大學碩士論文:台北,民94。
[93] Rafael C. Gonzalez, Richard E. Woods.“Digital image
processing,” Reading, Mass. :Addison-Wesley (1992).
[94] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xei, S. L. Shi, S. J. Xu and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).

下載圖示
QR CODE