研究生: |
洪筱恬 |
---|---|
論文名稱: |
沸石群礦物之拉曼光譜研究 |
指導教授: |
劉德慶
黃怡禎 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 沸石 、拉曼光譜 |
論文種類: | 學術論文 |
相關次數: | 點閱:251 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
沸石礦物普遍存在於火成岩的裂隙和孔洞中,在台灣東部海岸山脈即含有分佈廣泛的沸石群(陳培源,1998;陳培源等人,2004)。雖然沸石礦物在台灣東部分布廣泛,卻缺乏詳盡的礦物學研究。本研究主要在常溫常壓下,對不同系列的沸石礦物進行拉曼光譜量測,並以電子顯微分析確定其化學成分。針對沸石礦物拉曼光譜之振動模(vibration mode)進行初步比對與探討頻譜的變化,並進一步找出拉曼光譜與化學成分之關連性,繼而建立沸石礦物之拉曼光譜資料庫。
本研究共分析21件天然沸石與10件合成沸石樣本,並依據Gottardi and Galli (1985)分類法,分為五個部份進行討論:一、纖維質沸石(fibrous zeolites);二、單連結四環鏈(single 4-ring chains);三、雙連結四環鏈(doubly 4-ring chains);四、六環(6-ring);五、片沸石群(heulandite group)。分析結果顯示,相同二級構造單元(SBU)連接方式之沸石,擁有相似之拉曼光譜,再隨化學成分之不同,而有差異。拉曼譜線以範圍390~530 cm-1最明顯,為T-O-T (T=Si, Al)氧原子運動所造成,再配合低頻M-O振動模(M為陽離子,如Ca、Na、K等),以及較高頻之T-O振動模即可區分不同系列之沸石。
由於沸石礦物主要架構是由SiO4與AlO4連結而成,隨著Al取代Si對拉曼位移有一定程度的影響。纖維質沸石之拉曼光譜在~440 cm-1 、~530cm-1,會隨Al含量增加而輕微往高頻方向移動,是由於T-O-T角度變小所致。單連結四環鏈、雙連結四環鏈沸石最明顯之拉曼振動模,分別出現在400cm-1、480cm-1、490cm-1左右,會隨Al含量增加而往低頻方向移動,表示T-O-T角度變大。六環系列最明顯之拉曼振動模,分別出現在495 cm-1、480 cm-1和491 cm-1,三者與Al含量之間沒有固定的趨勢。片沸石群中,片沸石最明顯的T-O-T拉曼振動模出現在405 cm-1和482 cm-1左右;輝沸石最明顯的T-O-T拉曼振動模出現在410 cm-1和497 cm-1左右。由於Al含量的變化很小,因此對拉曼頻譜的影響並不是很顯著。
余炳盛 (1999) 拉曼光譜於資源工程科學之應用與實例。第二屆資源與環境學術研討會論文集, 第97-110頁。
李匡邦、許東明、何東英 (1997) 光譜化學分析。國立編譯館,第282-284頁。
林義傑 (2002) 方沸石之晶體生長與晶核生成與供應源距離之關係。 國立台灣大學地質科學研究所博士論文,共141頁。
徐濟安 (1996) 紅外吸收和拉曼光譜原理與測量。吳照明珠寶學刊,第26期,第22-29頁。
黃怡禎譯 (2002) 礦物學。地球科學文教基金會,共686頁。
黃恩萍 (2003) 角閃石類礦物之拉曼光譜研究。國立成功大學地球科學研究所碩士論文,共95頁。
陳惠芬 (2003) Na2OAl2O3nSiO2,CaOAl2O3nSiO2,xCaO(1-x)Na2O Al2O3nSiO2及xNa2O(1-x)K2OAl2O3nSiO2系統中合成沸石之研究。國立台灣大學地質科學研究所博士論文,共139頁。
陳培源 (1988) 臺灣海岸山脈六種沸石礦物之型態與性質。地質,第八卷,第一~二期,第49-61頁。
陳培源、劉德慶、黃怡禎 (2004) 台灣之礦物。經濟部中央地質調查所,第324-337頁。
Armbruster, T., and Gunter, M.E. (2001) Crystal structures of natural zeolites. Reviews in Mineralogy and Geochemistry, 45, 1-67.
Angell, C.L. (1973) Raman Spectroscopic investigation of Zeolites and Adsorbed Molecules. The Journal of Physical Chemistry, 77, 222-227.
Blackwell, C.S. (1979) Investigation of Zeolite Frameworks by Vibrational Properties. 1. The Double-Four-Ring in Group 3 Zeolites. The Journal of Physical Chemistry, 83, 3251-3257.
Blackwell, C.S. (1979) Investigation of Zeolite Frameworks by Vibrational Properties. 2. The Double-Six-Ring in Group 4 Zeolites. The Journal of Physical Chemistry, 83, 3257-3261.
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grige, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E., and Vezzalini, G. (1998) Recommended nomenclature for zeolite minerals: Report of subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist Special Feature, 28p.
Cronstedt, A.F. (1756) Observation and description of an unknown kind of rock to be named zeolites (in Swedish). Kongl. Vetenskaps. Acad. Handl. Stockh, 17, 120-123.
Dutta, P.K., and Barco, B.D. (1988) Raman spectroscopy of zeolite A: Influence of Si/ Al ratio. The Journal of Physical Chemistry, 92, 354-357.
Dutta, P.K., Rao, K.M., and Park, J.Y. (1991) Correlation of raman spectra of zeolites with framework architecture. The Journal of Physical Chemistry, 95, 6654-6656.
Dutta, P.K., and Shieh, D.C. (1986) Crystallization of zeolite A: A spectroscopic study. The Journal of Physical Chemistry, 90, 2331-2334.
Dutta, P.K., and Twu, J. (1991) Influence of framework Si/Al ratio on the raman spectra of Faujasitic zeolites. The Journal of Physical Chemistry, 95, 2498-2501.
Flanigen, E.M., Khatmi, J., and Szymanski M.A. (1971) In Molecular Sieves Zeolites. Adv. Chem. Ser., 101, p. 201.
Gao, Z.-X., Kim, H.-S., Sun, Q., Stair, P. C., and Sachtler, W.M.H. (2001) The Journal of Physical Chemistry B, 105, 6168-6190.
Gottardi, G., and Galli, E. (1985) Nateral Zeolites. Springer-Verlag, Berlin, 490p.
Gujar, A.C., Moye, A.A., Coghill, P.A., Teeters, D.C., Roberts, K.P., and Price, G.L. (2005) Raman investigation of the SUZ-4 zeolite. Microporous and Mesoporous Materials, 78, 131-137.
Hey, M. (1930) Studies on zeolites: Part Ι. General review. Mineral Mag. 22, 422-437.
Huang, Y., and Jiang, Z. (1997) Vibrational spectra of completely siliceous zeolite A. Microporous Materials, 12, 341-345.
Knops-Gerrits, P.-P., Vos, D.E.D., Feijen, E.J.P., and Jacobs, P.A. (1997) Review of Raman spectroscopy on zeolites. Microporous Materials, 8, 3-17.
Matson, D. W., Sharma, S. K., and Philpotts, J. A. (1986) Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. American Mineralogist, 71, 694-704.
McMillan, P.F. (1985) Vibrational spectroscopy in the mineral sciences. Reviews in Mineralogy, 14, 9-63.
McMillan, P.F., and Hofmeister, A.M. (1988) Infrared and Raman Spectroscopy. Reviews in Mineralogy, 18, 99-160.
Meier W.M.(1968) Zeolite structures. In: Molecular Sieves. Society of Chemical Industry, London, 10-27.
Mozgawa, W. (2001) The relation between structure and vibrational spectra of natural zeolites. Journal of Molecular Structure, 596, 129-137.
Mozgawa, W., Jastrzebski, W., and Handke, M. (2005) Vibrational spectra of D4R and D6R structural units. Journal of Molecular Structure, 744-747, 663-670.
Mumpton, F.A. (1977) Natural Zeolites. Reviews in Mineralogy, 4, 1-51.
No, K.T., Bae, D.H., and Jhon, M.S. (1986) Lattice vibrational calculation of A-type zeolite using the Pseudolattice Method. The Journal of Physical Chemistry, 90, 1772-1780.
Passaglia, E., and Sheppard, R.A. (2001) The crystal chemistry of zeolites. Reviews in Mineralogy and Geochemistry, 45, 69-116.
Ross, M., Flohr, M.J.K., and Ross, D.R. (1992) Crystalline solution series and order-disorder within the natrolite mineral group. American Mineralogist, 77, 685-703.
Yu, Y., Xiong, G., Li, C., and Xiao, F.-S. (2001) Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous and Mesoporous Materials, 46, 23-34.