簡易檢索 / 詳目顯示

研究生: 于珮琪
論文名稱: 國中生工作記憶及概數感與數學成就之關係
The relationship among working memory, number sense and mathematic achievement of junior high school students
指導教授: 顏妙璇
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 120
中文關鍵詞: 工作記憶概數感數學成就記憶更新作業
英文關鍵詞: working memory, number sense, mathematics achievement, memory updating task
論文種類: 學術論文
相關次數: 點閱:217下載:46
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以國中一年級至三年級學生為研究對象,目的在於瞭解國中階段學生的工作記憶能力、概數感能力與數學成就之關係為何?以及不同性別或年級,工作記憶能力、概數感能力是否不同?研究結果顯示,工作記憶能力和概數感能力都能夠有效預測數學成就,但是在相關分析、迴歸分析、及結構方程式模型中都可以發現,如果同時考慮工作記憶能力的影響,概數感能力所能貢獻的解釋量就會被削弱,改變量也無法達到顯著水準,顯示工作記憶和概數感兩者相比之下,工作記憶能力對數學成就的影響力比概數感能力強。不同性別的學生,在各項工作記憶作業及概數感作業的表現均未達顯著差異;而不同年齡層的學生,各項工作記憶作業及概數感作業的結果,則是有隨著年級增長而提升的趨勢,顯示到了國中階段工作記憶能力和概數感能力都還有成長的空間。工作記憶作業中,最能有效預測數學學習成就的是記憶更新作業,其次為運作廣度作業。建議未來教師可以將工作記憶作業與概數感作業測驗結果作為教學設計的參考,提供策略提高學生在解決數學問題的效率,例如:透過「作筆記」的方式,減輕工作記憶系統運作時的負擔。

    The purposes of this study were (1) to investigate the gender and grade differences in working memory capacity and number sense ability, and (2) to compare the effects of working memory and number sense on mathematics achievement. Two hundred and seventy six junior high school students, 12 to 15 years old, participated in this study.
    The results showed that (1) both working memory capacity and number sense ability effectively predicted mathematics achievement; (2) when working memory capacity was taken into account in the correlation analysis, regression analysis, and structural equation modeling, the contribution of number sense ability was weakened and failed to achieve the level of significance; (3) the memory updating task was the most effective predictor of mathematics achievement; and (4) working memory capacity and number sense ability increased with grade but were not different across gender.

    第一章 緒論 1 第一節 研究背景與研究動機 1 第二節 研究目的與研究問題 3 第三節 名詞解釋 4 第四節 研究範圍與研究限制 5 第五節 研究假設 6 第二章 文獻探討 7 第一節 Baddeley的工作記憶模型 7 第二節 工作記憶與數學成就之關係 12 第三節 概數系統(Approximate Numerosity System) 22 第四節 概數感與數學成就之關係 25 第三章 研究方法 31 第一節 研究對象 31 第二節 研究工具 32 第四章 研究結果 39 第一節 各項作業統計分析 39 第二節 相關分析 47 第三節 迴歸分析 49 第四節 結構方程式分析 52 第五節 討論 64 第五章 討論 72 第一節 結論 72 第二節 建議 73 參考文獻 75

    中文部分
    教育部. (2008). 國民中小學九年一貫課程綱要. 臺北市: 教育部.

    英文部分
    Attridgea, N., Gilmorea, C., & Inglis, M. (2009). Symbolic addition tasks, the approximate number system and dyscalculia. Learning Mathematics, 29(3).
    Baddeley, A. (2003). WORKING MEMORY: LOOKING BACK AND LOOKING FORWARD. Nature Reviews Neuroscience, 14(12), 534-541.
    Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: advances in research and theory (Vol. 8, pp. 47-90). New York: Academic Press.
    Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math Learning Disorder: Incidence in a Population-Based Birth Cohort, 1976–82, Rochester, Minn. Ambulatory Pediatrics, 5(5), 281-289
    Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86, 201-221.
    Barth, H., Mont, K. L., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Nonsymbolic arithmetic in adults and young children. Cognition, 98, 199-222.
    Berch, D. B. (2005). Making Sense of Number Sense: Implications for Children With Mathematical Disabilities. Journal of learning disabilities, 38(4), 333-339.
    Bull, R., & Scerif, G. (2001). Executive Functioning as a Predictor of children's Mathmatics Ability: Inhibition, Switching, and Working Memory. Developmental Neuropsychology, 19(3), 273-293.
    Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3-18.
    Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534-541.
    Bynner, J., & Parsons, S. (2006). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy, Institute of Education.
    Dehaene, S. (1997). The Number Sense: How the Mind Creates Mathematics. New York: Oxford University Press.
    Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
    Gathercole, S. E., & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70, 177-194.
    Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177-190.
    Gathercole, S. E., Pickering, S. J., Knight, C., & Stegmann, Z. (2004). Working memory skills and educational attainment: evidence from national curriculum assessments at 7 and 14 years of age. Applied Cognitive Psychology, 18(1), 1-16.
    Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24(4), 411-429.
    Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447, 589-591.
    Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394-406.
    Haberlandt, K. (1998). Human Memory:Exploration and Application. Boston: Allyn and Bacon.
    Halberda, J., & Feigenson, L. (2008). Developmental Change in the Acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds and Adults. Developmental Psychology, 44(5), 1457-1465.
    Halberda, J., Mazzocco, M. l. M. M., & Feigenson, L. (2008). Individual differences in nonverbal number acuity correlate with maths achievement. Nature, 455, 665-668.
    Han, C.-C., Yen, N. S., Didino, D., & Butterworth, B. (2012). Memory updating capacity is the better predictor of multiplication performance than numerical acuity. Poster presented at the 18th annual meeting of the Cognitive Neuroscience Society, Chicago, U.S.A..
    Hitch, G. J. (1978). The role of short-term working memory in mental arithmetic. Cognitive Psychology, 10(3), 302-323.
    Holmes, J., & Adams, J. W. (2006). Working memory and children's mathematical skills: implications for mathematical development and mathematics curricula. Educational Psychology, 26(3), 339-366.
    Iuculano, T., Moro, R., & Butterworth, B. (2011). Updating Working Memory and arithmetical attainment in school. Learning and Individual Differences, 21(6), 655-661.
    Jordan, N. C. (2010). Early Predictors of Mathematics Achievement and Mathematics Learning Difficulties. Encyclopedia on Early Childhood Development.
    Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The Importance of Number Sense to Mathematics Achievement in First and Third Grades. Learning and Individual Differences, 20(2), 82-88.
    Jordan, N. C., Kaplan, D., Locuniak, M. N., & Ramineni, C. (2007). Predicting First-Grade Math Achievement from Developmental Number Sense Trajectories. Learning Disabilities Research & Practice, 22(1), 36-46.
    Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early Math Matters: Kindergarten Number Competence and Later Mathematics Outcomes. Developmental Psychology, 45(3), 850-867.
    Kenny, D. A. (2011). Measuring Model Fit. Retrieved from http://www.davidakenny.net/cm/fit.htm
    Klein, K., & Boals, A. (2001). Expressive writing can increase working memory capacity. Journal of Experimental Psychology: General, 130(3), 520-533.
    Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8–9-year-old students. Cognition, 95(2), 99-125.
    Lemera, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: dissociable systems. Neuropsychologia, 41, 1942–1958.
    LewandowSky, S., Oberauer, K., yang, L.-X., & Ecker, U. K. H. (2010). A working memory test battery for MATLAB. Behavior Research Methods, 42(2), 571-585.
    Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300.
    Mazzocco, M. l. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ Precision of the Approximate Number System Predicts Later School Mathematics Performance. PLoS ONE, 6(9), e23749.
    Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20, 101-109.
    Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215, 1519 - 1520.
    Nieder, A., & Dehaene, S. (2009). Representation of Number in the brain. Annual Review of Neuroscience, 32, 185-208.
    Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and Approximate Arithmetic in an Amazonian Indigene Group. Science, 306(5695), 499-503.
    Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110-122.
    Rammelaere, S. D., Stuyven, E., & Vandierendonck, A. (2001). Verifying simple arithmetic sums and products: Are the phonological loop and the central executive involved? Memory & Cognition, 29(2), 267-273.
    Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 139(1), 5-21.
    Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology, 21(4), 397-399.
    Reys, R. E., & Yang, D.-c. (1998). Relationship Between Computational Performance and Number Sense Among Sixth- and Eight-grade Students in Taiwan. Journal for Research in Mathematics Education, 29(2), 225-237.
    Rousselle, L., & Noel, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.
    Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: a prospective six-year follow-up. Developmental Medicine & Child Neurology, 47(2), 121-125.
    Simmons, F. R., Willis, C., & Adams, A.-M. (2012). Different components of working memory have different relationships with different mathematical skills. Journal of Experimental Child Psychology, 111(2), 139-155.
    Smedt, B. D., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of Experimental Child Psychology 103(2), 186-201.
    Tenkorang, F., & Lowenberg-DeBoer, J. (2009). Forecasting long-term global fertilizer demand. Nutr. Cycl. Agroecosyst. , 83, 233-247. .
    Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of "The Number Race", an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(20), 1-16.
    Zheng, X., Swanson, H. L., & Marcoulides, G. A. (2011). Working memory components as predictors of children's mathematical word problem solving. Journal of Experimental Child Psychology, 110, 481-498.

    下載圖示
    QR CODE