研究生: |
林柏谷 Bo-Gu Lin |
---|---|
論文名稱: |
氧化鋁奈米流體應用於熱管熱性能研究 Thermal Performance of Heat Pipes with Alumina Nanofluid |
指導教授: |
徐昊杲
Hsu, How-Gao 鄧敦平 Teng, Tun-Ping |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 奈米流體 、熱管 、幾丁聚醣 、傾斜角 |
英文關鍵詞: | Nanofluid, Heat pipe, Chitosan, Tilt angle |
論文種類: | 學術論文 |
相關次數: | 點閱:379 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用二階合成法搭配水溶性幾丁聚醣分散劑製作出穩定懸浮的Al2O3/water奈米流體作為熱管的工作流體,並針對分散劑添加量對於Al2O3/water奈米流體的分散特性、熱傳導係數與流變等特性進行評估。最後再將最佳分散劑配製參數的Al2O3/water奈米流體實際應用於熱管之中,針對不同濃度、熱管長度、傾斜角、充填量與加熱功率的條件之下,探討各實驗參數對熱管熱性能的影響。研究結果顯示,在分散劑用量選擇方面,考慮分散特性與熱傳導係數兼顧之下,選擇添加0.2 wt.%的幾丁聚醣作為後續熱管性能實驗的分散劑濃度。在熱管性能實驗方面,當熱管傾斜角度為30°與充填量為20~40%時,會獲得較佳的熱傳性能,並且在加熱功率越高的狀況下更趨於明顯。在熱管長度對於熱性能影響方面,在相同的散熱能力之下,熱管長度越短,熱管內部工作流體輸送速率較快且管壁阻力相對較小,造成熱管無法在冷凝端進行良好的熱交換,故顯示出熱管長度越長時,其單位長度的熱阻越小。在整體效率提升方面,30cm熱管約可提升熱性能18.72%~43.78%,45cm熱管約可提升熱性能13.13%~50.72%,而60cm因本身熱阻較低,故熱性能提升約7.44%~17.67%。研究結果顯示,使用Al2O3/water奈米流體作為熱管的工作流體能比去離子水擁有較佳的熱輸送性能,對於高性能熱管的開發具有相當的潛力。
In this study, a two-step synthesis with a water-soluble dispersant of chitosan was used to produce stable suspensions of Al2O3/water nanofluid as the working fluid of the heat pipe. The thermal conductivity and rheological properties of the alumina/water nanofluids were evaluated. The optimal amount of added dispersant for the Al2O3/water nanofluid was determined. This study presents a discussion of the effects on the thermal performance of the heat pipe of the charged amount of working fluid, the tilt angle and length of the heat pipe, the heating power of the evaporator section, and the weight fraction of nanoparticles. The experimental results show that the optimal concentration of dispersant was 0.2wt.% to follow-up heat pipe thermal performance experiments under the dispersion properties and thermal conductivity simultaneously were considered. In thermal performance experiments, the optimal thermal performance of the heat pipe occurs when the tile angle of the heat pipe and the charged amount of working fluid are 30∘and 20 %~40 %, respectively. The shorter heat pipe is suitable for use in low heating power, and the longer heat pipe is suitable for use in high heating power applications under the same cooling condition. The 30 cm heat pipe can enhance the thermal performance efficiency by 18.72 %~43.78 %, the 45 cm heat pipe by 13.13 %~50.72 %, and the 60 cm heat pipe by 7.44 %~17.67 % when compared with deionized water as the working fluid of the heat pipe. This study confirmed that the Al2O3/water nanofluid has superior heat transport performance in the heat pipe compared with deionized water, and has considerable potential for use in the development of high performance heat pipes.
[1] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,台北:全華,2008,pp.1-13。
[2] 陳廷昱,三氧化二鋁奈米流體應用於電子散熱之效益研究,國立臺北科技大學能源與冷凍空調工程系碩士論文,2010。
[3] S. U. S. Choi, D. A. Siginer and H. P. Wang, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows, ASME, 231 (1995) 99-105。
[4] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson and S. Lee, Enhance thermal conductivity through the development of nanofluids, Nanophase and Nanocomposite Materials II, 457 (1997) 3-11。
[5] X. Wang, X. Xu and S. U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer, 13(4), (1999) 474-480。
[6] H. E. Patel1, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters, 83(14), (2003) 2931-2933。
[7] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Model for heat conduction in nanofluids, Physical Review Letters, 93(14), (2004) 144301。
[8] D. H. Yoo, K.S. Hong and H. S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochimica Acta, 455(1-2), (2007) 66-69。
[9] Y. R. He, Y. Jin, H. H. Chen, Y. L. Ding, D. Q.g Cang and H. L. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International Journal of Heat and Mass Transfer, 50(11-12), (2007) 2272-2281。
[10] K. B. Anoop, T. Sundararajan and S. K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, International Journal of Heat and Mass Transfer, 52(9-10), (2009) 2189-2195。
[11] W. Yu, D. M. France, D. S. Smith, D. Singh, E. V. Timofeeva and J. L. Routbort, Heat transfer to a silicon carbide/water nanofluid, International Journal of Heat and Mass Transfer, 52(15-16), (2009) 3606-3612。
[12] K. V. Sharma, L. S. Sundar and P. K. Sarma, Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert, International Communications in Heat and Mass Transfer, 74(3), (2009) 503-507。
[13] Y. Y. Li, L. C. Lv and Z. H. Liu, Influence of nanofluids on the operation characteristics of small capillary pumped loop, Energy Conversion and Management, 51(11), (2010) 2312-2320。
[14] M. Chandrasekar, S. Suresh and A. C. Bose, Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts, Experimental Thermal and Fluid Science, 34(2), (2010) 122-130。
[15] L. F. Chen and H. Q. Xie, Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant, Thermochimica Acta, 506(1-2), (2010) 62-66。
[16] M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, 52(1), (2011) 789-793。
[17] F. M. Su, X. E. Ma and Z. Lan, The effect of carbon nanotubes on the physical properties of a binary nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 42(2), (2011) 252-257。
[18] C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system, Applied Thermal Engineering, 27(89), (2007) 1501-1506。
[19] M. Kole and T.K. Dey, Viscosity of alumina nanoparticles dispersed in car engine coolant, Experimental Thermal and Fluid Science, 34(6), (2010) 677-683。
[20] S. P. Schroeder and G. K. Morris, Nanofluids in a Forced-Convection Liquid Cooling System -Benefits and Challenges-, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, Las Vegas, 2010。
[21] C. J. Ho, W. K. Liu, Y. S. Chang and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, 49(8), (2010) 1345-1353。
[22] H. T. Chien, C. I. Tsai, P. H. Chen and P. Y. Chen, Improvement On Thermal Performance Of a Disk-Shaped Miniature Heat Pipe With Nanofluid, The Fifth International Conference on Electronic Packaging Technology Proceedings, ICEPT2003, Shanghai, 2003, pp. 389-391。
[23] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh and P. H. Chena, Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Materials Letters, 58(9), (2004) 1461-1465。
[24] S. W. Kang, W. C.g Wei, S. H. Tsai and S. Y. Yang, Experimental investigation of silver nano-fluid on heat pipe thermal performance, Applied Thermal Engineering, 26(17-18), (2006) 2377-2382。
[25] Z. H. Liu, J. G. Xiong and R. Bao, “Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface”, International Journal of Multiphase Flow, 33(12), (2007) 1284-1295。
[26] P. Naphon, P. Assadamongkol and T. Borirak, “Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency”, International Communications in Heat and Mass Transfer, 35(10), (2008) 1316-1319。
[27] Y. T. Chen, W. C. Wei, S. W. Kang and C. S. Yu, Effect of nanofluid on flat heat pipe thermal performance, Semiconductor Thermal Measurement and Management Symposium, San Jose, 2008, pp. 16-19。
[28] S. H. Noie, S. Z. Heris, M. Kahani and S. M. Nowee, Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon, International Journal of Heat and Fluid Flow, 30(4), (2009) 700-705。
[29] Z. H. Liu, X. F. Yang, G. S. Wang and G. L. Guo, Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon , International Journal of Heat and Mass Transfer, 53(9-10), (2010) 1914-1920。
[30] G. Huminic, A. Huminic, I. Morjan and F. Dumitrache, Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles, International Journal of Heat and Mass Transfer, 54(1-3), (2011) 656-661。
[31] J. Qu, H. Y. Wu and P. Cheng, Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids, International Communications in Heat and Mass Transfer, 37(2), (2010) 111-115。
[32] S. Wannapakhe, S. Rittidech, B. Bubphachot and O. Watanabe, Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid, Journal of Mechanical Science and Technology, 23(6), (2009) 1576-1582。
[33] M. Shafahi, V. Bianco, K. Vafai and O. Manca, Thermal performance of flat-shaped heat pipes using nanofluids, International Journal of Heat and Mass Transfer, 53(7-8), (2010) 1438-1445。
[34] K. H. Do and S. P. Jang, Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, International Journal of Heat and Mass Transfer, 53(9-10), (2010) 183-2192。
[35] Z. H. Liu, Y. Y. Li and R. Bao, Thermal performance of inclined grooved heat pipes using nanofluids, International Journal of Thermal Sciences, 49(9), (2010) 1680-1687。
[36] G. S. Wang, B. Song and Z. H. Liu, Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids, Experimental Thermal and Fluid Science, 34(8), (2010) 1415-1421。
[37] Z. H. Liu and Q. Z. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Conversion and Management, 52(1), (2011) 292-300。
[38] K. H. Do, H. J. Ha and S. P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, International Journal of Heat and Mass Transfer, 53(25-26), (2010) 5888-5894。
[39] S. W. Kang, W. C. Wei, S. H. Tsai and C. C. Huang, Experimental investigation of nanofluids on sintered heat pipe thermal performance, Applied Thermal Engineering, 29(5-6), (2009) 973-979。
[40] 馬振基 主編,奈米材料科技原理與應用,台北:全華,2003。
[41] 王世敏、許祖勛、傅晶 編著,奈米材料原理與製備,台北:五南, 2004。
[42] 盧希鵬、馬振基,奈米材料技術地圖,台北:行政院國家科學委員會科學技術資料中心,pp. 4。
[43] 盧永坤,奈米科技概論,台中:滄海,2005。
[44] 蔡信行、孫光中,奈米科技導論 – 基本原理及應用,台北:新文京,2004。
[45] 邱源成 譯,奈米科技全書II – 觀察分析法,台北:全華,2005。
[46] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181,(2002) 100-108。
[47] 高濂、孫靜、劉陽橋,奈米粉體的分散與改性,台北:五南,2005。.
[48] 顏志羽,以水系電泳沉積法製備奈米碳膜,大同大學材料工程學系碩士論文,2009。
[49] J. C. Maxwell, A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK, 1881。
[50] D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen, Annalen der Physik, Leipzig, 24 (1935) 636-679。
[51] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78(6), (2001) 718-720。
[52] W. Yu and S. U. S. Choi, The role of interfacial layers in the enhance thermal conductivity of nanofluids: a renovated Maxwell model, Journal of Nanoparticle Research, 5 (2003) 167-171。
[53] S. E. B. Maïga, C. T. Nguyen, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices and Microstructures, 35 (2004) 543-557.
[54] B. C. Pak and Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide suspensions, Experimental Heat Transfer, 11(2), (1998) 151-170。
[55] R. S. Gaugler, Heat Transfer Device, Published US patent NO. 2350348, 1944。
[56] L. Trefethen, On the Surface Tension Pumping of Liquids or a Possible Role of the Candlewick in Space Exploration, G. E. Tech. Info., 615(114), 1962。
[57] G. M. Grover, T. P. Cotter, and G. F. Erickson, Structures of Very High Thermal Conductance, Journal of Applied Physics, 35(6), 1964 。
[58] T. P. Cotter, Theory of Heat Pipes, Los Alamos National Laboratory Report no. LA-3246-MS, The University of California, Los Alamos, NM, 1964。
[59] 15th International Heat Pipe Conference, IHPC. http:// www.clemson.edu/15ihpc。
[60] 沈志宏,成型加工對於熱管性能影響之探討,大同大學機械工程研究所碩士論文,2007。
[61] 維基百科,http://zh.wikipedia.org/zh-tw/。
[62] 王啟川,熱交換設計,台北:五南,2007,pp. 720-763。
[63] 依日光,熱管技術理論實務,台南:復漢,2000,pp. 1-39。
[64] 白東鑫,熱管原理和製造之簡介及其應用,鍛造,9(3),(2000) 45-53。
[65] 沈志秋,板狀熱管用於筆記型電腦散熱之研究,國立中興大學機械工程研究所碩士論文, 2003。
[66] R. C. Dorf, The Electrical Engineering Handbook 2nd edition (Electrical Engineering Handbook), CRC Press, U.S.A., 7(57), 2005。
[67] Hitachi High Technologies America, Inc. http://www.hitachi-hta.com。
[68] FEI CompanyTM, http://www.fei.com。
[69] JCPDS-ICDD,The International Centre for Diffraction Data,PCPDFWIN 2.4,2003。
[70] NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/。