研究生: |
陳怡婷 Chen, Yi-Ting |
---|---|
論文名稱: |
人類降鈣素雙突變體提升抗纖維化能力及做為胜肽藥物之潛能 Minimum Acquisition of Double Mutation in Human Calcitonin Enhances its Resistance to Fibrillization and its Use as Therapeutic Polypeptides |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 人類降鈣素 、胜肽藥物 、錯誤折疊 、胜肽設計 、預測軟體 |
英文關鍵詞: | Human calcitonin, Peptide-based drugs, Misfolding, Peptide design, Prediction software |
DOI URL: | http://doi.org/10.6345/NTNU201900675 |
論文種類: | 學術論文 |
相關次數: | 點閱:135 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胜肽的不可逆聚集通常導致其生理功能的喪失。人類降鈣素為32個胺基酸組成的荷爾蒙胜肽,在人體內是由甲狀腺周圍的濾泡旁細胞所分泌,其自然態參與調節血鈣平衡和維持骨骼結構,因此可用於治療骨骼相關疾病,例如骨質疏鬆症和佩吉特氏病。然而降鈣素易形成類澱粉蛋白沉積物的高聚集傾向,導致其天然功能喪失限制做為臨床藥物的發展。由於鮭魚降鈣素具有較高的生物活性和較低的聚集傾向而替代人類降鈣素成為廣泛使用的治療藥劑。可惜的是,鮭魚降鈣素的序列只有50%與人類降鈣素相同,這種低序列同源性會導致嚴重的副作用,包括臨床治療中的厭食、嘔吐和免疫反應。已顯示針對序列做修飾可以調節人類降鈣素的聚集傾向。先前在預測軟體Waltzs幫助下所進行的研究指出,當人類降鈣素的12、17、26、27和31這五個胺基酸位置發生突變會顯著地降低聚集速率,但仍保持生理結構和功能。
在本研究中,我們嘗試對人類降鈣素序列做最小變化的修飾,成功設計並合成出抗聚集的雙突變變異體(Y12L N17H hCT)。從圓偏光二色性光譜中我們發現Y12L N17H hCT具有穩定的螺旋結構。此外,透過光誘導未修飾蛋白交聯反應和電泳分析顯示,人類降鈣素會形成高分子量寡聚物,而Y12L N17H hCT則是以單體為主。Y12L N17H hCT在緩衝溶液和脂質存在下皆能抑制原生型hCT聚集。最重要的是,Y12L N17H hCT仍具有生物活性,可以和降鈣素受體結合並能激活cAMP途徑。因此,我們推測Y12和N17在人類降鈣素形成類澱粉蛋白纖維過程中為關鍵的胺基酸位置,而Y12L N17H hCT有做為胜肽藥物之潛能。
Irreversible aggregation of polypeptides commonly results in the loss of their physiological functions. Human calcitonin (hCT) is a 32 residues peptide hormone secreted from the parafollicular cells or C cells of the thyroid gland. The native form of calcitonin is involved in mediating calcium homeostasis and maintaining bone structure, hence it can be used as a treatment of metabolic bone diseases, such as osteoporosis and Paget's disease. However, its high tendency to form amyloid aggregates limits the clinical application. Salmon calcitonin (sCT) is the replacement of hCT as a widely therapeutic agent due to its higher bioactivity and lower propensity to aggregation. Unfortunately, sCT has low sequence identity with hCT (differing from hCT in 16 of the 32 amino acids) leading to severe side effects including anorexia, vomiting, and immune reactions in clinical therapy. Modifications of hCT have been shown to modulate its aggregation propensity. The previous study with the help of Waltzs prediction software found that the mutations which occur at five residues 12, 17, 26, 27 and 31 (called phCT) significantly decreased the rate of aggregation, but maintained the structure and biological function of peptide. In this work, we try to minimize the changes on hCT and hope to generate the aggregation-resisting variant for therapeutic use.
Herein, we successfully design and synthesize a double-mutated hCT(Y12L N17H hCT) that shows delayed aggregation profile compared with hCT. From circular dichroism spectra, we find that Y12L N17H hCT adapts partial α-helical structure and is as stable as phCT. Furthermore, photo-induced cross-linking of unmodified proteins (PICUP) and SDS-PAGE analysis reveal that hCT forms high molecular weight oligomers, while Y12L N17H hCT is monomer dominant. This variant is also effective in inhibiting hCT aggregation in buffer and in the presence of large unilamellar vesicles (LUVs). Most importantly, Y12L N17H hCT can still bind calcitonin receptor and activate the cAMP pathway. Therefore, we assume that Y12 and N17 play key roles in hCT amyloid aggregation and Y12L N17H hCT has the potential to be a peptide-based drug.
[1] Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S. I.; Merlini, G.; Saraiva, M. J.; Westermark, P., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016, 23 (4), 209-213.
[2] Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-366.
[3] Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med. 2003, 4 (1-2), 21-36.
[4] Lott, I. T.; Head, E., Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol. Aging 2005, 26 (3), 383-389.
[5] Westermark, P.; Andersson, A.; Westermark, G. T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011, 91 (3), 795-826.
[6] Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell. Biol. 2010, 11 (11), 777-788.
[7] Kajava, A. V.; Aebi, U.; Steven, A. C., The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 2005, 348 (2), 247-252.
[8] Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R., Structure-activity relationship of amyloid fibrils. FEBS Lett. 2009, 583 (16), 2610-2617.
[9] Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (26), 16742-16747.
[10] Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-13522.
[11] Nguyen, H. D.; Hall, C. K., Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (46), 16180-16185.
[12] Sugita, Y.; Okamoto, Y. J. C. p. l., Replica-exchange molecular dynamics method for protein folding. 1999, 314 (1-2), 141-151.
[13] Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 2012, 13 (3), 3038-3072.
[14] Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804 (7), 1405-1412.
[15] Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Abeta) peptides-a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803-812.
[16] Roberts, A. N.; Leighton, B.; Todd, J. A.; Cockburn, D.; Schofield, P. N.; Sutton, R.; Holt, S.; Boyd, Y.; Day, A. J.; Foot, E. A.; et al., Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (24), 9662-9666.
[17] Lopez, J.; Martinez, A., Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int. Rev. Cytol. 2002, 221, 1-92.
[18] Roh, J.; Chang, C. L.; Bhalla, A.; Klein, C.; Hsu, S. Y., Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 2004, 279 (8), 7264-7274.
[19] Rosenfeld, M. G.; Emeson, R. B.; Yeakley, J. M.; Merillat, N.; Hedjran, F.; Lenz, J.; Delsert, C., Calcitonin gene-related peptide: a neuropeptide generated as a consequence of tissue-specific, developmentally regulated alternative RNA processing events. Ann. N. Y. Acad. Sci. 1992, 657, 1-17.
[20] Sekiguchi, T., The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front. Endocrinol . 2018, 9, 695.
[21] Copp, D. H.; Cameron, E. C.; Cheney, B. A.; Davidson, A. G.; Henze, K. G., Evidence for calcitonin-a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962, 70, 638-649.
[22] Austin, L. A.; Heath, H., 3rd, Calcitonin: physiology and pathophysiology. N Engl J Med 1981, 304 (5), 269-78.
[23] Potts, J. T., Jr.; Niall, H. D.; Keutmann, H. T.; Brewer, H. B., Jr.; Deftos, L. J., The amino acid sequence of porcine thyrocalcitonin. Proc. Natl. Acad. Sci. U. S. A. 1968, 59 (4), 1321-1328.
[24] Niall, H. D.; Keutmann, H. T.; Copp, D. H.; Potts, J. T., Jr., Amino acid sequence of salmon ultimobranchial calcitonin. Proc. Natl. Acad. Sci. U. S. A. 1969, 64 (2), 771-778.
[25] Brewer, H. B., Jr.; Ronan, R., Amino acid sequence of bovine thyrocalcitonin. Proc. Natl. Acad. Sci. U. S. A. 1969, 63 (3), 940-947.
[26] Friedman, J.; Raisz, L. G., Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 1965, 150 (3702), 1465-1467.
[27] Foster, G. V., Calcitonin. A review of experimental and clinical investigations. Postgrad. Med. J. 1968, 44 (511), 411-422.
[28] Nicholson, G. C.; Moseley, J. M.; Sexton, P. M.; Mendelsohn, F. A.; Martin, T. J., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J. Clin. Invest. 1986, 78 (2), 355-360.
[29] Holtrop, M. E.; Raisz, L. G.; Simmons, H. A., The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J. Cell. Biol. 1974, 60 (2), 346-355.
[30] Chambers, T. J.; Magnus, C. J., Calcitonin alters behaviour of isolated osteoclasts. J. Pathol. 1982, 136 (1), 27-39.
[31] Chambers, T. J.; Fuller, K.; Darby, J. A., Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J. Cell. Physiol. 1987, 132 (1), 90-96.
[32] Stenbeck, G., Formation and function of the ruffled border in osteoclasts. Semin. Cell. Dev. Biol. 2002, 13 (4), 285-292.
[33] Martin, T. J.; Findlay, D. M.; MacIntyre, I.; Eisman, J. A.; Michelangeli, V. P.; Moseley, J. M.; Partridge, N. C., Calcitonin receptors in a cloned human breast cancer cell line (MCF 7). Biochem. Biophys. Res. Commun. 1980, 96 (1), 150-156.
[34] Wohlwend, A.; Malmstrom, K.; Henke, H.; Murer, H.; Vassalli, J. D.; Fischer, J. A., Calcitonin and calcitonin gene-related peptide interact with the same receptor in cultured LLC-PK1 kidney cells. Biochem. Biophys. Res. Commun. 1985, 131 (2), 537-542.
[35] Masi, L.; Brandi, M. L., Calcitonin and calcitonin receptors. Clin. Cases Miner. Bone Metab. 2007, 4 (2), 117-122.
[36] Peacock, M., Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5 Suppl 1, S23-S30.
[37] Mundy, G. R.; Guise, T. A., Hormonal control of calcium homeostasis. Clin. Chem. 1999, 45 (8 Pt 2), 1347-1352.
[38] Gruber, H. E.; Ivey, J. L.; Baylink, D. J.; Matthews, M.; Nelp, W. B.; Sisom, K.; Chesnut, C. H., 3rd, Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism 1984, 33 (4), 295-303.
[39] Arvinte, T.; Cudd, A.; Drake, A. F., The structure and mechanism of formation of human calcitonin fibrils. J. Biol. Chem. 1993, 268 (9), 6415-6422.
[40] Pun, K. K.; Chan, L. W., Analgesic effect of intranasal salmon calcitonin in the treatment of osteoporotic vertebral fractures. Clin. Ther. 1989, 11 (2), 205-209.
[41] Chesnut, C. H.; Silverman, S.; Andriano, K.; Genant, H.; Gimona, A.; Harris, S.; Kiel, D.; LeBoff, M.; Maricic, M.; Miller, P.; Moniz, C.; Peacock, M.; Richardson, P.; Watts, N.; Baylink, D., A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. Am. J. Med. 2000, 109 (4), 267-276.
[42] Cudd, A.; Arvinte, T.; Gaines Das, R. E.; Chinni, C.; MacIntyre, I., Enhanced potency of human calcitonin when fibrillation is avoided. J. Pharm. Sci. 1995, 84 (6), 717-719.
[43] Kanaori, K.; Nosaka, A. Y., Study of human calcitonin fibrillation by proton nuclear magnetic resonance spectroscopy. Biochemistry 1995, 34 (38), 12138-12143.
[44] Kamihira, M.; Naito, A.; Tuzi, S.; Nosaka, A. Y.; Saito, H., Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci. 2000, 9 (5), 867-877.
[45] Reches, M.; Porat, Y.; Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem. 2002, 277 (38), 35475-35480.
[46] Tsai, H. H.; Reches, M.; Tsai, C. J.; Gunasekaran, K.; Gazit, E.; Nussinov, R., Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (23), 8174-8179.
[47] Itoh-Watanabe, H.; Kamihira-Ishijima, M.; Javkhlantugs, N.; Inoue, R.; Itoh, Y.; Endo, H.; Tuzi, S.; Saitô, H.; Ueda, K.; Naito, A., Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Phys. Chem. Chem. Phys. 2013, 15 (23), 8890-8901.
[48] Cleland, J. L.; Powell, M. F.; Shire, S. J., The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug 1993, 10 (4), 307-377.
[49] Schellekens, H., Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 2002, 1 (6), 457-462.
[50] Chiti, F.; Calamai, M.; Taddei, N.; Stefani, M.; Ramponi, G.; Dobson, C. M., Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (Supplement 4), 16419-16426.
[51] Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C. M., Rationalization of the effects of mutations on peptide andprotein aggregation rates. Nature 2003, 424 (6950), 805-808.
[52] Fowler, S. B.; Poon, S.; Muff, R.; Chiti, F.; Dobson, C. M.; Zurdo, J., Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (29), 10105-10110.
[53] Villegas, V.; Zurdo, J.; Filimonov, V. V.; Aviles, F. X.; Dobson, C. M.; Serrano, L., Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci. 2000, 9 (9), 1700-1708.
[54] Kallberg, Y.; Gustafsson, M.; Persson, B.; Thyberg, J.; Johansson, J., Prediction of amyloid fibril-forming proteins. J Biol. Chem. 2001, 276 (16), 12945-12950.
[55] Andreotti, G.; Vitale, R. M.; Avidan-Shpalter, C.; Amodeo, P.; Gazit, E.; Motta, A., Converting the highly amyloidogenic human calcitonin into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic analogue. J. Biol. Chem. 2011, 286 (4), 2707-2718.
[56] Amodeo, P.; Motta, A.; Strazzullo, G.; Castiglione Morelli, M. A., Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. J. Biomol. NMR 1999, 13 (2), 161-174.
[57] Castiglione Morelli, M. A.; Pastore, A.; Motta, A., Dynamic properties of salmon calcitonin bound to sodium dodecyl sulfate micelles: a restrained molecular dynamics study from NMR data. J. Biomol. NMR 1992, 2 (4), 335-348.
[58] DuBay, K. F.; Pawar, A. P.; Chiti, F.; Zurdo, J.; Dobson, C. M.; Vendruscolo, M., Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol. 2004, 341 (5), 1317-1326.
[59] Cowan, R.; Whittaker, R. G., Hydrophobicity indices for amino acid residues as determined by high-performance liquid chromatography. Pept. Res. 1990, 3 (2), 75-80.
[60] Roseman, M. A., Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J. Mol. Biol. 1988, 200 (3), 513-522.
[61] Koehl, P.; Levitt, M., Structure-based conformational preferences of amino acids. Proc. Natl. Acad. Sci. U.S.A. 1999, 96 (22), 12524-12529.
[62] Broome, B. M.; Hecht, M. H., Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis 1 1Edited by F. E. Cohen. J. Mol. Biol. 2000, 296 (4), 961-968.
[63] Muñoz, V.; Serrano, L., Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Mol. Biol. 1994, 1 (6), 399-409.
[64] Castillo, V.; Grana-Montes, R.; Sabate, R.; Ventura, S., Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol. J. 2011, 6 (6), 674-685.
[65] Egashira, M.; Takase, H.; Yamamoto, I.; Tanaka, M.; Saito, H., Identification of regions responsible for heparin-induced amyloidogenesis of human serum amyloid A using its fragment peptides. Arch. Biochem. Biophys. 2011, 511 (1-2), 101-106.
[66] Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; Lopez de la Paz, M.; Martins, I. C.; Reumers, J.; Morris, K. L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J. W.; Rousseau, F., Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 2010, 7 (3), 237-242.
[67] Fernandez-Escamilla, A. M.; Rousseau, F.; Schymkowitz, J.; Serrano, L., Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 2004, 22 (10), 1302-1306.
[68] Thompson, M. J.; Sievers, S. A.; Karanicolas, J.; Ivanova, M. I.; Baker, D.; Eisenberg, D., The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (11), 4074-4078.
[69] Tsolis, A. C.; Papandreou, N. C.; Iconomidou, V. A.; Hamodrakas, S. J., A consensus method for the prediction of 'aggregation-prone' peptides in globular proteins. PLOS ONE 2013, 8 (1), e54175.
[70] Merrifield, R. B. J. J. o. t. A. C. S., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. 1963, 85 (14), 2149-2154.
[71] Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic s-tritylation. Org. Lett. 2015, 17 (9), 2202-2205.
[72] Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278 (19), 16462-16465.
[73] Puchtler, H.; Sweat, F., Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 1965, 13 (8), 693-694.
[74] LeVine, H., 3rd, Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1-40) amyloid fibrils. Arch. Biochem. Biophys. 1997, 342 (2), 306-316.
[75] Parrish, J. R., Jr.; Blout, E. R., Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol. Biopolymers 1971, 10 (9), 1491-1512.
[76] Luo, P.; Baldwin, R. L., Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997, 36 (27), 8413-8421.
[77] Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
[78] Hill, S. E.; Robinson, J.; Matthews, G.; Muschol, M., Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion. Biophys. J. 2009, 96 (9), 3781-3790.
[79] Lomakin, A.; Chung, D. S.; Benedek, G. B.; Kirschner, D. A.; Teplow, D. B., On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (3), 1125-1129.
[80] DLS. http://www.otsukael.com/product/detail/productid/1/category1id/2/category2id/1/category3id/29.
[81] Jiang, W., & Robinson, R. A., Ion mobility‐mass spectrometry. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 2006.
[82] Woods, L. A.; Radford, S. E.; Ashcroft, A. E., Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Biochim. Biophys. Acta 2013, 1834 (6), 1257-1268.
[83] Bitan, G.; Lomakin, A.; Teplow, D. B., Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 2001, 276 (37), 35176-35184.
[84] Bitan, G., Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Methods Enzymol. 2006, 413, 217-236.
[85] Rahimi, F.; Maiti, P.; Bitan, G., Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J. Vis. Exp. 2009, (23), e1071.
[86] Suda, T.; Takahashi, N.; Martin, T. J., Modulation of osteoclast differentiation. Endocr. Rev. 1992, 13 (1), 66-80.
[87] Kanzawa, M.; Sugimoto, T.; Kanatani, M.; Chihara, K., Involvement of osteoprotegerin/osteoclastogenesis inhibitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. Eur. J. Endocrinol. 2000, 142 (6), 661-664.
[88] Wang, S. S.; Good, T. A.; Rymer, D. L., The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. Int. J. Biochem. Cell Biol. 2005, 37 (8), 1656-1669.
[89] Shtainfeld, A.; Sheynis, T.; Jelinek, R., Specific mutations alter fibrillation kinetics, fiber morphologies, and membrane interactions of pentapeptides derived from human calcitonin. Biochemistry 2010, 49 (25), 5299-5307.
[90] Andreotti, G.; Méndez, B. L.; Amodeo, P.; Morelli, M. A. C.; Nakamuta, H.; Motta, A., Structural Determinants of Salmon Calcitonin Bioactivity. J. Biol. Chem. 2006, 281 (34), 24193-24203.
[91] Kawashima, H.; Katayama, M.; Yoshida, R.; Akaji, K.; Asano, A.; Doi, M., A dimer model of human calcitonin13-32 forms an α-helical structure and robustly aggregates in 50% aqueous 2,2,2-trifluoroethanol solution. J. Pept. Sci. 2016, 22 (7), 480-484.
[92] Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y. H.; Goto, Y.; Refregiers, M.; Kardos, J., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (24), E3095-E3103.
[93] Micsonai, A.; Wien, F.; Bulyaki, E.; Kun, J.; Moussong, E.; Lee, Y. H.; Goto, Y.; Refregiers, M.; Kardos, J., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018, 46 (W1), W315-W322.
[94] Young, L. M.; Saunders, J. C.; Mahood, R. A.; Revill, C. H.; Foster, R. J.; Tu, L. H.; Raleigh, D. P.; Radford, S. E.; Ashcroft, A. E., Screening and classifying small-[1] Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S. I.; Merlini, G.; Saraiva, M. J.; Westermark, P., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016, 23 (4), 209-213.
[2] Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-366.
[3] Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med. 2003, 4 (1-2), 21-36.
[4] Lott, I. T.; Head, E., Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol. Aging 2005, 26 (3), 383-389.
[5] Westermark, P.; Andersson, A.; Westermark, G. T., Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011, 91 (3), 795-826.
[6] Tyedmers, J.; Mogk, A.; Bukau, B., Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell. Biol. 2010, 11 (11), 777-788.
[7] Kajava, A. V.; Aebi, U.; Steven, A. C., The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 2005, 348 (2), 247-252.
[8] Maji, S. K.; Wang, L.; Greenwald, J.; Riek, R., Structure-activity relationship of amyloid fibrils. FEBS Lett. 2009, 583 (16), 2610-2617.
[9] Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R., A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (26), 16742-16747.
[10] Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-13522.
[11] Nguyen, H. D.; Hall, C. K., Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (46), 16180-16185.
[12] Sugita, Y.; Okamoto, Y. J. C. p. l., Replica-exchange molecular dynamics method for protein folding. 1999, 314 (1-2), 141-151.
[13] Pryor, N. E.; Moss, M. A.; Hestekin, C. N., Unraveling the early events of amyloid-beta protein (Abeta) aggregation: techniques for the determination of Abeta aggregate size. Int. J. Mol. Sci. 2012, 13 (3), 3038-3072.
[14] Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804 (7), 1405-1412.
[15] Kumar, S.; Walter, J., Phosphorylation of amyloid beta (Abeta) peptides-a trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY) 2011, 3 (8), 803-812.
[16] Roberts, A. N.; Leighton, B.; Todd, J. A.; Cockburn, D.; Schofield, P. N.; Sutton, R.; Holt, S.; Boyd, Y.; Day, A. J.; Foot, E. A.; et al., Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (24), 9662-9666.
[17] Lopez, J.; Martinez, A., Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int. Rev. Cytol. 2002, 221, 1-92.
[18] Roh, J.; Chang, C. L.; Bhalla, A.; Klein, C.; Hsu, S. Y., Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 2004, 279 (8), 7264-7274.
[19] Rosenfeld, M. G.; Emeson, R. B.; Yeakley, J. M.; Merillat, N.; Hedjran, F.; Lenz, J.; Delsert, C., Calcitonin gene-related peptide: a neuropeptide generated as a consequence of tissue-specific, developmentally regulated alternative RNA processing events. Ann. N. Y. Acad. Sci. 1992, 657, 1-17.
[20] Sekiguchi, T., The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front. Endocrinol . 2018, 9, 695.
[21] Copp, D. H.; Cameron, E. C.; Cheney, B. A.; Davidson, A. G.; Henze, K. G., Evidence for calcitonin-a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962, 70, 638-649.
[22] Austin, L. A.; Heath, H., 3rd, Calcitonin: physiology and pathophysiology. N Engl J Med 1981, 304 (5), 269-78.
[23] Potts, J. T., Jr.; Niall, H. D.; Keutmann, H. T.; Brewer, H. B., Jr.; Deftos, L. J., The amino acid sequence of porcine thyrocalcitonin. Proc. Natl. Acad. Sci. U. S. A. 1968, 59 (4), 1321-1328.
[24] Niall, H. D.; Keutmann, H. T.; Copp, D. H.; Potts, J. T., Jr., Amino acid sequence of salmon ultimobranchial calcitonin. Proc. Natl. Acad. Sci. U. S. A. 1969, 64 (2), 771-778.
[25] Brewer, H. B., Jr.; Ronan, R., Amino acid sequence of bovine thyrocalcitonin. Proc. Natl. Acad. Sci. U. S. A. 1969, 63 (3), 940-947.
[26] Friedman, J.; Raisz, L. G., Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 1965, 150 (3702), 1465-1467.
[27] Foster, G. V., Calcitonin. A review of experimental and clinical investigations. Postgrad. Med. J. 1968, 44 (511), 411-422.
[28] Nicholson, G. C.; Moseley, J. M.; Sexton, P. M.; Mendelsohn, F. A.; Martin, T. J., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J. Clin. Invest. 1986, 78 (2), 355-360.
[29] Holtrop, M. E.; Raisz, L. G.; Simmons, H. A., The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J. Cell. Biol. 1974, 60 (2), 346-355.
[30] Chambers, T. J.; Magnus, C. J., Calcitonin alters behaviour of isolated osteoclasts. J. Pathol. 1982, 136 (1), 27-39.
[31] Chambers, T. J.; Fuller, K.; Darby, J. A., Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J. Cell. Physiol. 1987, 132 (1), 90-96.
[32] Stenbeck, G., Formation and function of the ruffled border in osteoclasts. Semin. Cell. Dev. Biol. 2002, 13 (4), 285-292.
[33] Martin, T. J.; Findlay, D. M.; MacIntyre, I.; Eisman, J. A.; Michelangeli, V. P.; Moseley, J. M.; Partridge, N. C., Calcitonin receptors in a cloned human breast cancer cell line (MCF 7). Biochem. Biophys. Res. Commun. 1980, 96 (1), 150-156.
[34] Wohlwend, A.; Malmstrom, K.; Henke, H.; Murer, H.; Vassalli, J. D.; Fischer, J. A., Calcitonin and calcitonin gene-related peptide interact with the same receptor in cultured LLC-PK1 kidney cells. Biochem. Biophys. Res. Commun. 1985, 131 (2), 537-542.
[35] Masi, L.; Brandi, M. L., Calcitonin and calcitonin receptors. Clin. Cases Miner. Bone Metab. 2007, 4 (2), 117-122.
[36] Peacock, M., Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5 Suppl 1, S23-S30.
[37] Mundy, G. R.; Guise, T. A., Hormonal control of calcium homeostasis. Clin. Chem. 1999, 45 (8 Pt 2), 1347-1352.
[38] Gruber, H. E.; Ivey, J. L.; Baylink, D. J.; Matthews, M.; Nelp, W. B.; Sisom, K.; Chesnut, C. H., 3rd, Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism 1984, 33 (4), 295-303.
[39] Arvinte, T.; Cudd, A.; Drake, A. F., The structure and mechanism of formation of human calcitonin fibrils. J. Biol. Chem. 1993, 268 (9), 6415-6422.
[40] Pun, K. K.; Chan, L. W., Analgesic effect of intranasal salmon calcitonin in the treatment of osteoporotic vertebral fractures. Clin. Ther. 1989, 11 (2), 205-209.
[41] Chesnut, C. H.; Silverman, S.; Andriano, K.; Genant, H.; Gimona, A.; Harris, S.; Kiel, D.; LeBoff, M.; Maricic, M.; Miller, P.; Moniz, C.; Peacock, M.; Richardson, P.; Watts, N.; Baylink, D., A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. Am. J. Med. 2000, 109 (4), 267-276.
[42] Cudd, A.; Arvinte, T.; Gaines Das, R. E.; Chinni, C.; MacIntyre, I., Enhanced potency of human calcitonin when fibrillation is avoided. J. Pharm. Sci. 1995, 84 (6), 717-719.
[43] Kanaori, K.; Nosaka, A. Y., Study of human calcitonin fibrillation by proton nuclear magnetic resonance spectroscopy. Biochemistry 1995, 34 (38), 12138-12143.
[44] Kamihira, M.; Naito, A.; Tuzi, S.; Nosaka, A. Y.; Saito, H., Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci. 2000, 9 (5), 867-877.
[45] Reches, M.; Porat, Y.; Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem. 2002, 277 (38), 35475-35480.
[46] Tsai, H. H.; Reches, M.; Tsai, C. J.; Gunasekaran, K.; Gazit, E.; Nussinov, R., Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (23), 8174-8179.
[47] Itoh-Watanabe, H.; Kamihira-Ishijima, M.; Javkhlantugs, N.; Inoue, R.; Itoh, Y.; Endo, H.; Tuzi, S.; Saitô, H.; Ueda, K.; Naito, A., Role of aromatic residues in amyloid fibril formation of human calcitonin by solid-state 13C NMR and molecular dynamics simulation. Phys. Chem. Chem. Phys. 2013, 15 (23), 8890-8901.
[48] Cleland, J. L.; Powell, M. F.; Shire, S. J., The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug 1993, 10 (4), 307-377.
[49] Schellekens, H., Bioequivalence and the immunogenicity of biopharmaceuticals. Nat. Rev. Drug Discov. 2002, 1 (6), 457-462.
[50] Chiti, F.; Calamai, M.; Taddei, N.; Stefani, M.; Ramponi, G.; Dobson, C. M., Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (Supplement 4), 16419-16426.
[51] Chiti, F.; Stefani, M.; Taddei, N.; Ramponi, G.; Dobson, C. M., Rationalization of the effects of mutations on peptide andprotein aggregation rates. Nature 2003, 424 (6950), 805-808.
[52] Fowler, S. B.; Poon, S.; Muff, R.; Chiti, F.; Dobson, C. M.; Zurdo, J., Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (29), 10105-10110.
[53] Villegas, V.; Zurdo, J.; Filimonov, V. V.; Aviles, F. X.; Dobson, C. M.; Serrano, L., Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci. 2000, 9 (9), 1700-1708.
[54] Kallberg, Y.; Gustafsson, M.; Persson, B.; Thyberg, J.; Johansson, J., Prediction of amyloid fibril-forming proteins. J Biol. Chem. 2001, 276 (16), 12945-12950.
[55] Andreotti, G.; Vitale, R. M.; Avidan-Shpalter, C.; Amodeo, P.; Gazit, E.; Motta, A., Converting the highly amyloidogenic human calcitonin into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic analogue. J. Biol. Chem. 2011, 286 (4), 2707-2718.
[56] Amodeo, P.; Motta, A.; Strazzullo, G.; Castiglione Morelli, M. A., Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. J. Biomol. NMR 1999, 13 (2), 161-174.
[57] Castiglione Morelli, M. A.; Pastore, A.; Motta, A., Dynamic properties of salmon calcitonin bound to sodium dodecyl sulfate micelles: a restrained molecular dynamics study from NMR data. J. Biomol. NMR 1992, 2 (4), 335-348.
[58] DuBay, K. F.; Pawar, A. P.; Chiti, F.; Zurdo, J.; Dobson, C. M.; Vendruscolo, M., Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J. Mol. Biol. 2004, 341 (5), 1317-1326.
[59] Cowan, R.; Whittaker, R. G., Hydrophobicity indices for amino acid residues as determined by high-performance liquid chromatography. Pept. Res. 1990, 3 (2), 75-80.
[60] Roseman, M. A., Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J. Mol. Biol. 1988, 200 (3), 513-522.
[61] Koehl, P.; Levitt, M., Structure-based conformational preferences of amino acids. Proc. Natl. Acad. Sci. U.S.A. 1999, 96 (22), 12524-12529.
[62] Broome, B. M.; Hecht, M. H., Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis 1 1Edited by F. E. Cohen. J. Mol. Biol. 2000, 296 (4), 961-968.
[63] Muñoz, V.; Serrano, L., Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Mol. Biol. 1994, 1 (6), 399-409.
[64] Castillo, V.; Grana-Montes, R.; Sabate, R.; Ventura, S., Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol. J. 2011, 6 (6), 674-685.
[65] Egashira, M.; Takase, H.; Yamamoto, I.; Tanaka, M.; Saito, H., Identification of regions responsible for heparin-induced amyloidogenesis of human serum amyloid A using its fragment peptides. Arch. Biochem. Biophys. 2011, 511 (1-2), 101-106.
[66] Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; Lopez de la Paz, M.; Martins, I. C.; Reumers, J.; Morris, K. L.; Copland, A.; Serpell, L.; Serrano, L.; Schymkowitz, J. W.; Rousseau, F., Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 2010, 7 (3), 237-242.
[67] Fernandez-Escamilla, A. M.; Rousseau, F.; Schymkowitz, J.; Serrano, L., Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 2004, 22 (10), 1302-1306.
[68] Thompson, M. J.; Sievers, S. A.; Karanicolas, J.; Ivanova, M. I.; Baker, D.; Eisenberg, D., The 3D profile method for identifying fibril-forming segments of proteins. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (11), 4074-4078.
[69] Tsolis, A. C.; Papandreou, N. C.; Iconomidou, V. A.; Hamodrakas, S. J., A consensus method for the prediction of 'aggregation-prone' peptides in globular proteins. PLOS ONE 2013, 8 (1), e54175.
[70] Merrifield, R. B. J. J. o. t. A. C. S., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. 1963, 85 (14), 2149-2154.
[71] Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic s-tritylation. Org. Lett. 2015, 17 (9), 2202-2205.
[72] Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278 (19), 16462-16465.
[73] Puchtler, H.; Sweat, F., Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 1965, 13 (8), 693-694.
[74] LeVine, H., 3rd, Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1-40) amyloid fibrils. Arch. Biochem. Biophys. 1997, 342 (2), 306-316.
[75] Parrish, J. R., Jr.; Blout, E. R., Spectroscopic studies of random chain and -helical polypeptides in hexafluoroisopropanol. Biopolymers 1971, 10 (9), 1491-1512.
[76] Luo, P.; Baldwin, R. L., Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997, 36 (27), 8413-8421.
[77] Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
[78] Hill, S. E.; Robinson, J.; Matthews, G.; Muschol, M., Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion. Biophys. J. 2009, 96 (9), 3781-3790.
[79] Lomakin, A.; Chung, D. S.; Benedek, G. B.; Kirschner, D. A.; Teplow, D. B., On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (3), 1125-1129.
[80] DLS. http://www.otsukael.com/product/detail/productid/1/category1id/2/category2id/1/category3id/29.
[81] Jiang, W., & Robinson, R. A., Ion mobility‐mass spectrometry. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 2006.
[82] Woods, L. A.; Radford, S. E.; Ashcroft, A. E., Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Biochim. Biophys. Acta 2013, 1834 (6), 1257-1268.
[83] Bitan, G.; Lomakin, A.; Teplow, D. B., Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem. 2001, 276 (37), 35176-35184.
[84] Bitan, G., Structural study of metastable amyloidogenic protein oligomers by photo-induced cross-linking of unmodified proteins. Methods Enzymol. 2006, 413, 217-236.
[85] Rahimi, F.; Maiti, P.; Bitan, G., Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides. J. Vis. Exp. 2009, (23), e1071.
[86] Suda, T.; Takahashi, N.; Martin, T. J., Modulation of osteoclast differentiation. Endocr. Rev. 1992, 13 (1), 66-80.
[87] Kanzawa, M.; Sugimoto, T.; Kanatani, M.; Chihara, K., Involvement of osteoprotegerin/osteoclastogenesis inhibitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. Eur. J. Endocrinol. 2000, 142 (6), 661-664.
[88] Wang, S. S.; Good, T. A.; Rymer, D. L., The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects. Int. J. Biochem. Cell Biol. 2005, 37 (8), 1656-1669.
[89] Shtainfeld, A.; Sheynis, T.; Jelinek, R., Specific mutations alter fibrillation kinetics, fiber morphologies, and membrane interactions of pentapeptides derived from human calcitonin. Biochemistry 2010, 49 (25), 5299-5307.
[90] Andreotti, G.; Méndez, B. L.; Amodeo, P.; Morelli, M. A. C.; Nakamuta, H.; Motta, A., Structural Determinants of Salmon Calcitonin Bioactivity. J. Biol. Chem. 2006, 281 (34), 24193-24203.
[91] Kawashima, H.; Katayama, M.; Yoshida, R.; Akaji, K.; Asano, A.; Doi, M., A dimer model of human calcitonin13-32 forms an α-helical structure and robustly aggregates in 50% aqueous 2,2,2-trifluoroethanol solution. J. Pept. Sci. 2016, 22 (7), 480-484.
[92] Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y. H.; Goto, Y.; Refregiers, M.; Kardos, J., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (24), E3095-E3103.
[93] Micsonai, A.; Wien, F.; Bulyaki, E.; Kun, J.; Moussong, E.; Lee, Y. H.; Goto, Y.; Refregiers, M.; Kardos, J., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018, 46 (W1), W315-W322.
[94] Young, L. M.; Saunders, J. C.; Mahood, R. A.; Revill, C. H.; Foster, R. J.; Tu, L. H.; Raleigh, D. P.; Radford, S. E.; Ashcroft, A. E., Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry-mass spectrometry. Nat. Chem. 2015, 7 (1), 73-81.
[95] Young, L. M.; Tu, L. H.; Raleigh, D. P.; Ashcroft, A. E.; Radford, S. E., Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chem. Sci. 2017, 8 (7), 5030-5040.
[96] Seifert, R.; Andreassen, K. V.; Hjuler, S. T.; Furness, S. G.; Sexton, P. M.; Christopoulos, A.; Nosjean, O.; Karsdal, M. A.; Henriksen, K., Prolonged calcitonin receptor signaling by salmon, but not human calcitonin, reveals ligand bias. PLOS ONE 2014, 9 (3), e92042.