簡易檢索 / 詳目顯示

研究生: 張上豪
Chang, Shang-Hao
論文名稱: 積分型干擾觀測器於週期性干擾補償之設計與實現
An Integral Disturbance Observer for Estimation of Periodic Disturbances
指導教授: 呂有勝
Lu, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 干擾估測反覆學習非線性控制
英文關鍵詞: Disturbance observer, Repetitive control, Nonlinear system
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.018.2018.E08
論文種類: 學術論文
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用干擾估來提升伺服馬達旋轉位置的精度,其針對重覆運動所產生的週期性干擾進行估測,並補償至控制系統中達到訓練機械精準地完成動作。為了驗證控制器的功效性,本文使用伺服馬達裝載四連桿機構產生非線性的干擾,四連桿機構在運行時會通過死點,對系統帶來極大的干擾,不易即時地達到準確的估測。
    本研究是在干擾估測器中加入反覆學習機制,來改善對於週期性干擾的估測能力,利用週期性干擾訊號每隔固定的時間就會重覆的特性,使得反覆學習機制可以漸進地逼近未知的訊號。相較傳統的方式,本研究的干擾觀測器針對於週期性干擾有更好的估測能力,當伺服馬達負載快速的變化時,干擾估測能力的提升可以提高位置控制的精準。
    在實驗平台方面,使用三菱無刷伺服馬達,並使用美國德州儀器(Texas Instruments, TI)公司生產TMS320C6713 DSP開發板進行數位訊號處理,搭配具備FPGA、ADC、DAC等的擴充子板。在FPGA方面,利用VHDL硬體描述語言實現數位電路,進行訊號擷取;而在控制法則實現上,透過TI提供的Code Composer Studio (CCS)發展環境,以C/C++撰寫控制器程式並下載到DSP上執行,進行非線性平台的定速控制實驗。由實驗結果顯示,本研究提出之方法能有效地估測系中週期性干擾。

    The disturbance observer (DOB) is useful to a control system. When a system is of high-order and subject to periodic disturbances, The DOB is unable to effectively attenuate such disturbances with a finite-bandwidth filter. Thus it becomes a tradeoff problem between noise rejection and disturbance attenuation. The conventional infinite-order disturbance observer (IFDOB) has been proposed to suppress a periodic disturbance. A modification to the IFDOB was also proposed to enhance the low-frequency compensation. Moreover, an integral disturbance observer (IDOB) and an DC-IDOB were presented to simplify DOB’s implementation. This thesis presents an IF-IDOB scheme that combined the advantages of the IDOB and the repetitive control in order to provide enhanced estimation of periodic disturbances.
    The experimentation is carried out using TSM320C6713 DSP and a daughter board, including FPGA, DAC, and ADC. The digital circuit of FPGA is designed by the VHSIC very high-speed hardware description languages to implement data acquisition and storage. The code composer studio developed by Texas Instruments is an effective tool for compiling C/C++ for the control algorithm. The sampling rate of DSP is fixed to 11kHz and achieves a real-time control system.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明 xii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 IDOB 2 1.2.2 DC-IDOB 3 1.2.3 IF-DOB 4 1.2.4 Repetitive Control 5 1.3 論文架構 8 第二章 實驗平台 9 2.1 實驗平台簡介 9 2.2 系統硬體架構 9 2.2.1 訊號流程 9 2.2.2 系統位置回授 11 2.3 系統參數與模型 13 2.3.1 系統鑑別 14 2.3.2 四連桿系統 16 第三章 干擾估測器改良 18 3.1 控制器選擇 18 3.2 PD控制器與實驗 20 3.3 積分式干擾估測 24 3.3.1 系統雜訊 26 3.3.2 濾波器的加入 27 3.3.3 IDOB實驗結果 27 3.4 IFIDOB 29 3.4.1 濾波器q(s)的加入 33 3.4.2 IFIDOB實驗結果 35 第四章 穩定性探討 38 第五章 參數計算與實驗 41 5.1 計算公式推導 41 5.2 IFIDOB設計步驟 44 5.3 與IF-DOB比較 47 5.4 不同控制器實驗結果 52 第六章 IFIDOB改良與實驗 55 6.1 濾波器q(s)的相位補償 55 6.1.1 改良型q(s) 55 6.1.2 實驗結果 58 6.2 加入b(s) 改善頻率響應峰值 60 6.2.1 b(s)選擇 60 6.2.2 實驗結果 63 6.3 抗干擾能力提升 63 6.4 IFIDOB改良後設計步驟 67 第七章 FIR濾波器的使用 68 7.1 FIR濾波器介紹 68 7.2 Equiripple 68 7.3 Hamming Window 71 7.4 比較實驗結果 74 7.5 不同轉速實驗結果 75 第八章 結論 78 8.1 結論 78 8.2 未來展望 78 參考文獻 79 附錄A FPGA 81 附錄B DSP 83

    參考文獻
    [1] K. Ohnishi, M. Shibata, and T. Murakami, “Motion control for advanced mechatronics,” IEEE/ASME Trans. Mechatronics, vol. 1, no. 1, pp. 56–67, Mar. 1996.
    [2] H. Muramatsu and S. Katsura, “Periodic disturbance suppression based on infinite-order disturbance observer,” in Proc. IEEJ SAMCON, Mar. 2016.
    [3] Y. D. Chen, P. C. Tung, and C. C. Fuh, “Robust disturbance rejection method for uncertain system with disturbances of unknown frequencies,” Nonlinear Dynamics, vol. 55, pp. 329–336, 2008.
    [4] M. H. Tsai and P. C. Tung, “A disturbance reduction scheme for linear small delay systems with modeling uncertainties,” Journal of Process Control, vol. 20, pp. 777–786, 2010.
    [5] Y. S. Lu and R. Shieh, “A jerk-constrained time-optimal servo with disturbance compensation,” Control Engineering Practice, vol. 28, pp. 49–57, Jul. 2014.
    [6] Y. S. Lu, B. X. Wu, and S. F. Lien, “An improved sliding-mode repetitive learning control scheme using wavelet transform,” Asian Journal of Control, vol. 14, no. 4, pp. 991–1001, Jul. 2012.
    [7]Xiangbo Xu, Jinhao Liu, Shao Chen, “Internal model control for reduction of bias and harmonic currents in hybrid magnetic bearing,” Mechanical Systems and signal Processing, vol. 115, pp. 70-81, 2019.
    [8]Mi-Ching Tsai, and Wu-Sung Yao, “Design of a Plug-In Type Repetitive Controller for Periodic Inputs,” Transaction on control system systems technology, IEEE, vol. 10, no. 4, july. 2002.
    [9]Shuang Cong, “An Innovative Repetive Control System,” International Conference on Intelligent Processing Systems, 1997.
    [10]H. L. Broberg and R. G. Molyet, “A new approach to phase cancellation in repetitive control,” in proc. 29th IEEE IAS, 1994, pp. 1766-1770.
    [11]S. Hara, Y. Yamammoto, T.Omata, and M. Nakano, “Repetitive control system: Anew type servo system for periodic exogenous signals,” IEEE trans. Automat. Contr, vol. 33, pp. 659-666, July 1988.
    [12]G. Hillerstrom and J. Sternby, “Application of repetitive control to a peristaltic pump,” in Proc. IEEE int. Conf Ind Technol., 1994, pp. 533-537.
    [13]K Srinivasan and F. R. Shaw, “Analysis and design of repetitive control systems usingthe regeneration spectrum,” Trans. ASME, vol. 113, pp.113-217,1991.
    [14]Emre Sariyildiz, and Kouhei Ohnishi, “Stability and Robustness of Disturbance-Observer-Based Motion Control Systems,” IEEE transactions on industrial electronics, vol. 62, no. 1, January 2015.
    [15]Wen-Hua Chen, “Disturbance observer based control for nonlinear systems,”IEEE/ASME Transactions on mechatronics, vol 9, no.4, December 2004.

    無法下載圖示 本全文未授權公開
    QR CODE