簡易檢索 / 詳目顯示

研究生: 李冠霆
Li, Guan-Ting
論文名稱: 電極與 NbSe2 機械振盪器的交互作用
Electric control mechanical oscillator of NbSe2
指導教授: 江佩勳
Jiang, Pei-hsun
陳啟東
Chen, Chii-Dong
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 機械振盪器乾式轉印法機械剝離法本徵頻率二硒化鈮
DOI URL: http://doi.org/10.6345/NTNU201901175
論文種類: 學術論文
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將介紹如何使用電極控制機械振盪器 (mechanical oscillator),並且介紹機械振盪器的製程。我們是使用一種過渡金屬二硫族的化合物 (transition metal dichalcogenides , TMDs) 二硒化鈮 (Niobium Diselenide , NbSe2) 作為機械振盪器的主體,我們可以利用二維的 NbSe_2 來提供機械振盪器所需要的鼓膜性質,並觀察電壓源對於薄膜的改變與控制,於實驗上我們可以藉由交流電頻率的改變找出薄膜的本徵頻率,也可以使用直流電壓源的改變控制本徵頻率展生變化。
    晶片製程方面則由Design CAD設計,並利用電子束微影與熱蒸鍍製作電路與光阻空腔,機械振盪器所需之晶片電路,在材料方面經由聚二甲基矽氧烷 (Polydimethylsiloxane , PDMS) 作為媒介,使用機械剝離法剝離出二維的 NbSe2,並用乾式轉印法將 NbSe2 轉印到晶片上。並透過電性量測來得知樣品在電晶體上保持良好的特性,最後使用共軛焦雷射掃描顯微鏡與向量網路分析儀觀測其 鼓膜振盪之本徵頻率與共振頻率,並用Comsol做為理論模擬,印證實驗結果。

    致謝 i 摘要 ii 圖目錄 v 表目錄 vii Chapter 1 緒論 1 1.1 文獻回顧 1 1.2 單層二硒化鈮的結構 3 1.3 二硒化鈮薄膜的運動模式 6 1.4 二硒化鈮本徵頻率的振盪模式 9 Chapter 2 實驗技術 13 2.1 熱蒸鍍系統(Thermal Evaporator) 13 2.2 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 15 2.2.1 原理 15 2.2.2 參數設定與操作步驟 18 2.2.3 NPGS (Nanometer Pattern Generation System) 19 2.3 電子束微影技術 (E-Beam Exposure) 20 2.3.1 塗佈光阻與加熱參數 20 2.3.2 電子束光刻與顯影參數 21 2.4 共軛焦掃描式顯微鏡 (Confocal Lacer Scanning Microscopy,CLSM) 22 2.4.1 第一部份:光學器具架設圖 23 2.4.2 第二部份:控制confocal的系統 25 2.4.3 第三部份:調整直流與交流電壓控制樣品 26 Chapter 3 二硒化鈮之製備與量測 27 3.1 二硒化鈮的製備 27 3.1.1 聚二甲基矽氧烷 (Polydimethylsiloxane,PDMS) 27 3.1.2 機械剝離法 (Mechanical Exfoliation) 29 3.1.3 乾式轉印法 (Dry Transfer) 31 3.2 晶片的設計與製程 33 3.2.1 DesignCAD 33 3.2.2 晶片製程 34 3.3 二硒化鈮元件模擬 37 3.3.1 Comsol 37 3.3.2 實驗模擬 37 3.4 二硒化鈮元件量測 40 Chapter 4 總結與未來展望 43 附件一 44 實驗藥品 44 引文 45

    [1] J. S. Bunch et al., "Electromechanical resonators from graphene sheets," vol. 315, no. 5811, pp. 490-493, 2007.
    [2] J. S. Bunch et al., "Impermeable atomic membranes from graphene sheets," vol. 8, no. 8, pp. 2458-2462, 2008.
    [3] A. Castellanos‐Gomez, R. van Leeuwen, M. Buscema, H. S. van der Zant, G. A. Steele, and W. J. J. A. M. Venstra, "Single‐Layer MoS2 Mechanical Resonators," vol. 25, no. 46, pp. 6719-6723, 2013.
    [4] Z. Wang et al., "Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies," vol. 7, no. 3, pp. 877-884, 2015.
    [5] S. J. Cartamil-Bueno et al., "High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe 2," vol. 8, no. 9, pp. 2842-2849, 2015.
    [6] A. D. Smith et al., "Pressure sensors based on suspended graphene membranes," vol. 88, pp. 89-94, 2013.
    [7] S. P. Koenig, L. Wang, J. Pellegrino, and J. S. J. N. n. Bunch, "Selective molecular sieving through porous graphene," vol. 7, no. 11, p. 728, 2012.
    [8] L. Wang et al., "Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene," vol. 10, no. 9, p. 785, 2015.
    [9] A. Sakhaee-Pour, M. Ahmadian, and A. J. S. S. C. Vafai, "Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors," vol. 145, no. 4, pp. 168-172, 2008.
    [10] R. J. Dolleman, D. Davidovikj, S. J. Cartamil-Bueno, H. S. van der Zant, and P. G. J. N. l. Steeneken, "Graphene squeeze-film pressure sensors," vol. 16, no. 1, pp. 568-571, 2015.
    [11] M. Poot and H. S. J. A. P. L. van der Zant, "Nanomechanical properties of few-layer graphene membranes," vol. 92, no. 6, p. 063111, 2008.
    [12] R. J. Nicholl et al., "The effect of intrinsic crumpling on the mechanics of free-standing graphene," vol. 6, p. 8789, 2015.
    [13] A. M. v. d. Zande et al., "Large-scale arrays of single-layer graphene resonators," vol. 10, no. 12, pp. 4869-4873, 2010.
    [14] A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. J. N. n. Bachtold, "Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene," vol. 6, no. 6, p. 339, 2011.
    [15] R. Van Leeuwen, A. Castellanos-Gomez, G. Steele, H. van der Zant, and W. J. A. P. L. Venstra, "Time-domain response of atomically thin MoS2 nanomechanical resonators," vol. 105, no. 4, p. 041911, 2014.
    [16] R. A. Barton et al., "High, size-dependent quality factor in an array of graphene mechanical resonators," vol. 11, no. 3, pp. 1232-1236, 2011.
    [17] D. Davidovikj, J. J. Slim, S. J. Cartamil-Bueno, H. S. van der Zant, P. G. Steeneken, and W. J. J. N. l. Venstra, "Visualizing the motion of graphene nanodrums," vol. 16, no. 4, pp. 2768-2773, 2016.
    [18] S. Sengupta, H. S. Solanki, V. Singh, S. Dhara, and M. M. J. a. p. a. Deshmukh, "Nanoscale electromechanical resonators as probes of the charge density wave transition in NbSe $ _2$," 2010.
    [19] D. Garcia-Sanchez, A. M. van der Zande, A. S. Paulo, B. Lassagne, P. L. McEuen, and A. J. N. l. Bachtold, "Imaging mechanical vibrations in suspended graphene sheets," vol. 8, no. 5, pp. 1399-1403, 2008.
    [20] Y. Cao et al., "Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere," vol. 15, no. 8, pp. 4914-4921, 2015.
    [21] C.-S. Lian, C. Si, and W. J. N. l. Duan, "Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2," vol. 18, no. 5, pp. 2924-2929, 2018.
    [22] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. J. N. c. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," vol. 5, no. 4, p. 263, 2013.
    [23] A. Kumar and P. J. T. E. P. J. B. Ahluwalia, "Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors," vol. 85, no. 6, p. 186, 2012.
    [24] H. Wang et al., "High-quality monolayer superconductor NbSe 2 grown by chemical vapour deposition," vol. 8, no. 1, p. 394, 2017.
    [25] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. J. N. n. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," vol. 7, no. 11, p. 699, 2012.
    [26] C. Ataca, H. Sahin, and S. J. T. J. o. P. C. C. Ciraci, "Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure," vol. 116, no. 16, pp. 8983-8999, 2012.
    [27] R. Lieth, Preparation and crystal growth of materials with layered structures. Springer Science & Business Media, 1977.
    [28] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. J. P. B. C. M. Tang, "First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers," vol. 406, no. 11, pp. 2254-2260, 2011.
    [29] S. Kang, J. J. J. o. S. Lee, and Vibration, "Application of free vibration analysis of membranes using the non-dimensional dynamic influence function," vol. 234, no. 3, pp. 455-470, 2000.
    [30] L. Meirovitch, "Principles and techniques of vibration," vol. Prentice-Hall International, 1997.
    [31] U. Siedlecka, S. Kukla, I. J. S. R. o. t. I. o. M. Zamorska, and C. Science, "Free vibration of composite circular membranes," vol. 11, no. 1, pp. 99-105, 2012.
    [32] P. Mehta, "Vibrations of thin plate with piezoelectric actuator: theory and experiments," 2009.
    [33] D. Davidovikj, F. Alijani, S. J. Cartamil-Bueno, H. S. van der Zant, M. Amabili, and P. G. J. N. c. Steeneken, "Nonlinear dynamic characterization of two-dimensional materials," vol. 8, no. 1, p. 1253, 2017.
    [34] Scanning Electron Microscope. Available: https://en.wikipedia.org/wiki/Scanning_electron_microscope

    下載圖示
    QR CODE