研究生: |
李冠霆 Li, Guan-Ting |
---|---|
論文名稱: |
電極與 NbSe2 機械振盪器的交互作用 Electric control mechanical oscillator of NbSe2 |
指導教授: |
江佩勳
Jiang, Pei-hsun 陳啟東 Chen, Chii-Dong |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 機械振盪器 、乾式轉印法 、機械剝離法 、本徵頻率 、二硒化鈮 |
DOI URL: | http://doi.org/10.6345/NTNU201901175 |
論文種類: | 學術論文 |
相關次數: | 點閱:201 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將介紹如何使用電極控制機械振盪器 (mechanical oscillator),並且介紹機械振盪器的製程。我們是使用一種過渡金屬二硫族的化合物 (transition metal dichalcogenides , TMDs) 二硒化鈮 (Niobium Diselenide , NbSe2) 作為機械振盪器的主體,我們可以利用二維的 NbSe_2 來提供機械振盪器所需要的鼓膜性質,並觀察電壓源對於薄膜的改變與控制,於實驗上我們可以藉由交流電頻率的改變找出薄膜的本徵頻率,也可以使用直流電壓源的改變控制本徵頻率展生變化。
晶片製程方面則由Design CAD設計,並利用電子束微影與熱蒸鍍製作電路與光阻空腔,機械振盪器所需之晶片電路,在材料方面經由聚二甲基矽氧烷 (Polydimethylsiloxane , PDMS) 作為媒介,使用機械剝離法剝離出二維的 NbSe2,並用乾式轉印法將 NbSe2 轉印到晶片上。並透過電性量測來得知樣品在電晶體上保持良好的特性,最後使用共軛焦雷射掃描顯微鏡與向量網路分析儀觀測其 鼓膜振盪之本徵頻率與共振頻率,並用Comsol做為理論模擬,印證實驗結果。
[1] J. S. Bunch et al., "Electromechanical resonators from graphene sheets," vol. 315, no. 5811, pp. 490-493, 2007.
[2] J. S. Bunch et al., "Impermeable atomic membranes from graphene sheets," vol. 8, no. 8, pp. 2458-2462, 2008.
[3] A. Castellanos‐Gomez, R. van Leeuwen, M. Buscema, H. S. van der Zant, G. A. Steele, and W. J. J. A. M. Venstra, "Single‐Layer MoS2 Mechanical Resonators," vol. 25, no. 46, pp. 6719-6723, 2013.
[4] Z. Wang et al., "Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies," vol. 7, no. 3, pp. 877-884, 2015.
[5] S. J. Cartamil-Bueno et al., "High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe 2," vol. 8, no. 9, pp. 2842-2849, 2015.
[6] A. D. Smith et al., "Pressure sensors based on suspended graphene membranes," vol. 88, pp. 89-94, 2013.
[7] S. P. Koenig, L. Wang, J. Pellegrino, and J. S. J. N. n. Bunch, "Selective molecular sieving through porous graphene," vol. 7, no. 11, p. 728, 2012.
[8] L. Wang et al., "Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene," vol. 10, no. 9, p. 785, 2015.
[9] A. Sakhaee-Pour, M. Ahmadian, and A. J. S. S. C. Vafai, "Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors," vol. 145, no. 4, pp. 168-172, 2008.
[10] R. J. Dolleman, D. Davidovikj, S. J. Cartamil-Bueno, H. S. van der Zant, and P. G. J. N. l. Steeneken, "Graphene squeeze-film pressure sensors," vol. 16, no. 1, pp. 568-571, 2015.
[11] M. Poot and H. S. J. A. P. L. van der Zant, "Nanomechanical properties of few-layer graphene membranes," vol. 92, no. 6, p. 063111, 2008.
[12] R. J. Nicholl et al., "The effect of intrinsic crumpling on the mechanics of free-standing graphene," vol. 6, p. 8789, 2015.
[13] A. M. v. d. Zande et al., "Large-scale arrays of single-layer graphene resonators," vol. 10, no. 12, pp. 4869-4873, 2010.
[14] A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. J. N. n. Bachtold, "Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene," vol. 6, no. 6, p. 339, 2011.
[15] R. Van Leeuwen, A. Castellanos-Gomez, G. Steele, H. van der Zant, and W. J. A. P. L. Venstra, "Time-domain response of atomically thin MoS2 nanomechanical resonators," vol. 105, no. 4, p. 041911, 2014.
[16] R. A. Barton et al., "High, size-dependent quality factor in an array of graphene mechanical resonators," vol. 11, no. 3, pp. 1232-1236, 2011.
[17] D. Davidovikj, J. J. Slim, S. J. Cartamil-Bueno, H. S. van der Zant, P. G. Steeneken, and W. J. J. N. l. Venstra, "Visualizing the motion of graphene nanodrums," vol. 16, no. 4, pp. 2768-2773, 2016.
[18] S. Sengupta, H. S. Solanki, V. Singh, S. Dhara, and M. M. J. a. p. a. Deshmukh, "Nanoscale electromechanical resonators as probes of the charge density wave transition in NbSe $ _2$," 2010.
[19] D. Garcia-Sanchez, A. M. van der Zande, A. S. Paulo, B. Lassagne, P. L. McEuen, and A. J. N. l. Bachtold, "Imaging mechanical vibrations in suspended graphene sheets," vol. 8, no. 5, pp. 1399-1403, 2008.
[20] Y. Cao et al., "Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere," vol. 15, no. 8, pp. 4914-4921, 2015.
[21] C.-S. Lian, C. Si, and W. J. N. l. Duan, "Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2," vol. 18, no. 5, pp. 2924-2929, 2018.
[22] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. J. N. c. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," vol. 5, no. 4, p. 263, 2013.
[23] A. Kumar and P. J. T. E. P. J. B. Ahluwalia, "Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors," vol. 85, no. 6, p. 186, 2012.
[24] H. Wang et al., "High-quality monolayer superconductor NbSe 2 grown by chemical vapour deposition," vol. 8, no. 1, p. 394, 2017.
[25] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. J. N. n. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," vol. 7, no. 11, p. 699, 2012.
[26] C. Ataca, H. Sahin, and S. J. T. J. o. P. C. C. Ciraci, "Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure," vol. 116, no. 16, pp. 8983-8999, 2012.
[27] R. Lieth, Preparation and crystal growth of materials with layered structures. Springer Science & Business Media, 1977.
[28] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. J. P. B. C. M. Tang, "First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers," vol. 406, no. 11, pp. 2254-2260, 2011.
[29] S. Kang, J. J. J. o. S. Lee, and Vibration, "Application of free vibration analysis of membranes using the non-dimensional dynamic influence function," vol. 234, no. 3, pp. 455-470, 2000.
[30] L. Meirovitch, "Principles and techniques of vibration," vol. Prentice-Hall International, 1997.
[31] U. Siedlecka, S. Kukla, I. J. S. R. o. t. I. o. M. Zamorska, and C. Science, "Free vibration of composite circular membranes," vol. 11, no. 1, pp. 99-105, 2012.
[32] P. Mehta, "Vibrations of thin plate with piezoelectric actuator: theory and experiments," 2009.
[33] D. Davidovikj, F. Alijani, S. J. Cartamil-Bueno, H. S. van der Zant, M. Amabili, and P. G. J. N. c. Steeneken, "Nonlinear dynamic characterization of two-dimensional materials," vol. 8, no. 1, p. 1253, 2017.
[34] Scanning Electron Microscope. Available: https://en.wikipedia.org/wiki/Scanning_electron_microscope