簡易檢索 / 詳目顯示

研究生: 齊祿祥
論文名稱: 利用衛星資料推估中國大陸與台灣地區地表反照率研究
指導教授: 陳國彥
學位類別: 博士
Doctor
系所名稱: 地理學系
Department of Geography
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 133
中文關鍵詞: 反照率灰度值濾雲法亮度溫度
英文關鍵詞: Albedo, Grey Scale, Cloud Filtering, Brightness Temperature
論文種類: 學術論文
相關次數: 點閱:136下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    利用地球同步氣象衛星可見光頻道窄譜的反照率推估,可藉地表與大氣環境中雲系的反照率灰度值不同區間分布特性,決定灰度門檻值,保留大部份地表的反照率灰度值。為得到晴空地表之反照率,必須去除雲系的干擾影響,同時引進紅外線頻道表面亮度溫度與地面實際觀測氣溫的溫度偏差濾雲法,由兩者之間的溫度偏差量,將可見光頻道地表反照率雲區影響部分濾除,獲得晴空之平均窄譜表面反照率。
    經NCEP氣候資料庫的5年平均氣候反照率數據資料的再分析,與同步衛星平均窄頻反照率之統計分析,顯示兩者具有高度正相關結果,相關係數r=0.94,迴歸方程為αNCEP = 1.675 + 0.875αGMS 。由此迴歸修正方程可訂正衛星窄譜反照率資料,得到寬譜之平均地表反照率。
    地表反照率的分布與降雨、氣象條件、地表狀況有顯著的相關性。中國大陸青藏高原、內蒙河套與中國東北地區持續存在降雨偏少且相對地表乾燥的高反照率區域,因此內蒙河套一帶為春季發生沙塵暴的源地。華中以南由於降雨集中的結果使得,因此地表反照率明顯偏低。台灣地區東部、東南部、西部與西南部反照率為全年較高地區,山區與部份西南、東北部地區有相對較低反照率表現;另外在台灣附近海域之島嶼亦出現較高反照率情形。
    由衛星推估結果顯示,水體反照率為3~10%;其次為潮濕地表,平均反照率為8~15%;乾燥表面則有相對較高12~27%反照值。大氣環境中的對流雲反照率最高,約為33~79%;其次為霧區與層雲,反照率為23~58%;高層雲因其透光特性,故反照率較低,約為15~42%。

    Abstract
    The estimation of the narrow-band albedo from the visible channel of the GMS Satellite can be made by deciding the gray scale, which can be derived from the different distribution characteristics of the albedo ranges for the surface and the cloud systems in the atmosphere. In order to get the albedo of the fair-sky surface, the disturbances caused by the cloud systems should be eliminated, and at the same time, the temperature of the infrared channel surface brightness and the method of the cloud filtering on the temperatures of the actual surface observations should be included. From the amounts of the temperature deviations between the two, the albedo of the cloud-affected areas of the visible channel can be eliminated, and the fair-sky average surface albedo of the narrow-band can be gained.
    Through reanalysis of the 5-year average climatological albedo data from the NCEP Climatological Database and the statistical analysis of the average narrow-band from the GMS Satellite, it appears that there exists a highly correlated relationship between the two, and the correlation coefficient r=0.94, the regression equation is αNCEP = 1.675 + 0.875αGMS. By applying this corrected regression equation, the data from the satellite narrow-band albedo can be corrected and the average surface albedo of the broad-band can be gained.
    There is a significant interrelationship among the distribution of the surface albedo, precipitation, meteorological conditions and the surface conditions. The Tibetan Plateau of the Mainland China Her-teau, interior Mongolia and the northeastern area of the Mainland China keep a phenomenon of deficient precipitation with also high albedo areas of dry surfaces; therefore, areas around Herteau and interior Mongolia appear to be the source places for the spring sandstorms. Areas to the south of the central Mainland China, it is due to the result of the concentration of the precipitation which makes the humidity of the soil to elevate, and the colors of the soils are getting darker; therefore, the surface albedo significantly deviates toward a low value.
    From the estimation results of the satellite, it appears that the albedo of the water is 3~10%, damp area is 8~ 15% and arid area is 12~27%. The highest albedo values, which rank 33~79%, in the atmosphere belong to the convective clouds; the second place whose albedo is 23~58% goes to the fog areas and the stratus; due to the transparency of the cirrus clouds, it has a lower albedo, about 15-42%.

    摘要Ⅰ 目錄Ⅲ 圖目Ⅴ 表目Ⅶ 第一章前言1 第一節研究動機與研究目的…………………………………………1 第二節相關研究之文獻回顧………………………………………4 第三節可見光與反照率……………………………………………11 第二章資料處理與研究方法18 第一節資料來源…………………………………………..………18 第二節衛星資料的修正……………………………………..……25 第三節研究方法與研究步驟……………………………………..30 第四節可見光頻道地表反照率門檻值………………….……..…33 第五節溫度偏差濾雲法……………..….………………..……..…34 第六節地面觀測站氣溫之內差網格客觀分析………….……….38 第七節小結…………………….………………….…………….40 第三章地球同步衛星單頻道表面反照率特徵41 第一節不同表面特性之灰度值分布情形……………………..…41 第二節可見光頻道初步反照率門檻值選取……………………..60 第三節小結………………………….…………….…………….62 第四章晴空地表氣溫與紅外線表面亮度溫度關係…...…63 第一節亮度溫度…………………………………………………..63 第二節傳統表面觀測溫度與衛星觀測亮度溫度之關係…....……65 第三節晴空地表氣溫與紅外線亮度溫度統計相關……………..69 第四節可見光頻道反照率推估分析個案………….…...………..74 第五節小結………………………..……………….…………….78 第五章寬譜之地表反照率推估79 第一節美國國家環境預報中心簡介……………………………..79 第二節美國國家環境預報中心氣候數據資料再分析…………..82 第三節同步衛星窄譜反照率與NCEP氣候資料庫反照率….......86 迴歸修正方程 第四節小結………………………………………….…………….90 第六章結果與討論91 第一節衛星可見光單頻道月平均反照率……..…………………91 第二節修正後之地表月平均反照率……...…....…………………98 第三節不同性質表面特性之反照率……………………………108 第四節台灣地區月平均反照率分佈情形…….……………..…111 第五節小結……………….….……………………………………119 第七章結論與檢討121 第一節結論………………………..……………..……………121 第二節檢討………..………………………...…....……………124 參考文獻125 一、中文部分……………………………………………………125 二、英文部分……………………………………………………127 三、website網址………………………………………………132 致謝133

    參考資料
    中文部分:
    王開存、陳長和、郭鈮,2003:用NOAA/AVHRR探測地表反射率和NDVI的訂正及誤差分析。應用氣象學報,14,2,165-174。
    方宗義、劉玉洁、林曼筠,1996:青藏高原地表反照率研究。氣象學報,54,5,580-588。
    石宇虹、朴贏、張箐,1999:應用NOAA/AVHRR資料監測水稻長勢的研究。應用氣象學報,10,2,243-248。
    石廣玉、李昌明譯,田中正之著,1995:地球在變暖。明文書局,臺北市,171頁。
    金蓮姬、劉晶淼、李雁領、丁裕國,2002:利用NOAA-AVHRR遙感資料反演長江三角洲地表反照率的試驗。南京氣象學院學報,25,1,28-35。
    金奎譯,J. T. Houghton著,1986:全球氣候。氣象出版社,北京市,517頁。
    林松錦、陳雯美,1987:Barnes客觀分析方法中影響半徑的選擇。大氣科學,15,59-67。
    徐興奎、劉素紅,2002:中國地表平均反照率的遙感反演。氣象學報,60,2,215-220。
    許健民、方宗義、徐建平、郭陸軍等譯,1994:氣象衛星-系統、資料及其在環境中的應用。氣象出版社,北京市,500頁。
    陳建綏,1964:中國地表反照率的分布及變化。地理學報,30,2,85-93。
    陳雲浩、李曉兵、謝鋒,2001:我國西北地區地表反照率的遙感研究。地理科學,21,4,327-332。
    陳懷亮、馮定原、鄒春暉,1999:用遙感資料估算深層土壤水分的方法和模型。
    應用氣象學報,10,2,232-237。
    陳渭民、夏浣清、陳光宇,1993:衛星氣象學。氣象出版社,北京市,602頁。
    陸渝蓉、高國棟,1987:物理氣候學。氣象出版社,北京市,645頁。
    陸渝蓉、高國棟,1976:我國輻射平衡各分量的計算方法及時空分布特徵。南京大學學報,(2),89-110。
    曾忠一,1983:大氣遙測原理與應用。衛星氣象訓練教材001號,中央氣象局,台灣台北,287頁。
    曾忠一,1987:氣象與遙測資料的客觀分析。中央研究院物理研究所,台灣台北,410頁。
    曾忠一,1988:大氣衛星遙測學。國立編譯館,台灣台北,603頁。
    張子瑩、劉說安、陳弈穎,2003:利用衛星資料估算台中地區地表熱通量及熱島效應關係之研究。天氣分析與預報研討會論文彙編,中央氣象局,479-483。
    錢正安、蔡英、劉景濤、李棟梁,2002:中國北方沙塵暴研究若干問題。沙塵暴學術研討會,蒙藏委員會,台北,63-76。
    英文部分:
    Ahrens, C. D., 1991: Meteorology Today An Introduction to Weather, Climate, and The Environment. West Publishing Company, St.Paul, MN, pp577.
    Alishouse, J. C. and E. P. McClain, 1985: Sea surface temperature determinations. Advances in Geophysics, 27, Academic Press, New York, NY, 279-296.
    Allen, R. C. Jr., P. Durkee, and W. H. Carlyle, 1990 : Snow/cloud discrimination with multispectral satellite measurements. J. Appl. Meteor. 29, 994 -1004.
    Bader, M. J., G. S., Forbes, J. R. Grant, R. B. E. Lilley, and A. J. Waters, 1997: "Images in Weather Forecasting : A Practical Guide for Interpreting Satellite and Radar Imagery", Cambridge University Press, 499pp.
    Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396-409.
    Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observations. NOAA Tech. Memo. ERLNSSL-62, 60pp.
    Berbet, M. L. C. and M. H. Costa., 2003: Climate Change after Tropical Deforestation: Seasonal Variability of Surface Albedo and Its Effects on Precipitation Change. Journal of Climate, vol 16, 12, 2099-2104.
    Bernstein, R. L., 1982a: Sea surface temperature mapping with the Seasat microwave radiometer. J. Geophys. Res., 87, 1877-1891.
    Berkofsky, L., 1976: The effect of variable surface albedo on the atmospheric circulation in the desert regions. J. Appl. Meteor., 15, 1139-1144.
    Bonfils, C., N. Noblet-Ducoudré, P. Braconnot, and S. Joussaume, 2001: Hot desert albedo and climate change: Mid-Holocene monsoon in North Africa. Journal of Climate, vol 14,17, 3724-3737.
    Brisco, B. and R. J. Brown, 1995: Multidate SAR/TM Synergism for Crop Classification in Western Canada. Photogrammetric Engineering & Remote Sensing, 61, 8, 1009-1014.
    Budyko, M. I., 1969: The effect of solar radiation variations on climate of the earth.Tellus, 21, 611-619.
    Cano, D., J. M. Monget, M. Albuisson et al., 1986: A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy., 37, 31-39.
    Charnery, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193-202.
    Charnery, J. G., W. J. Quirk, S. M. Chew, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in seme-arid regions. J. Atmos. Sci., 34, 1366-1977.
    Colwell, R. N., J. E. Estes, and G. A. Thorly, 1983: Geological applications. Manual of Remote Sensing, 2, Amer. Soc. of Photogram., Falls Church, VA, 1667-1954.
    Conway, E. D. and The Maryland Space Grant Consortium, 1997: An Introduction to Satellite Image Interpretation. The Johns Hopkins University Press, Baltimore and London, 242pp.
    Dedieu, G., P. Y. Deschamps, and Y. H. Kerr, 1987: Satellite estimation of solar irradiance at the surface of the Earth and surface albedo using a physical model applided to meteosat data. J. Clim. Appl. Meteor., 26, 79-87.
    Derksen, C., J. Piwowar, De. R. Abreu, and E. LeDrew, 1997: High resolution sea ice albedo as determined using low level aerial photography and surface reflectance measurements. Geomatics in the Era of Radarsat, Ottawa, May.
    Derrien, M., B. Farki, L. Harang, H. LeGleau, A. Noyalet, D. Pochic, and A. Sairouni, 1993: Automatic cloud detection applied to NOAA-11/AVHRR Imagery. Remote Sens. Environ. 46, 246-267.
    Dickinson, R. E., 1995: Land processes in climate models. Remote Sens. Environ. 51: 27-38.
    Ellsaesser, H. W., M. C. MacCracken, G. L. Potter, and F. M. Luther, 1976: An additional model test of positive feedback from high desert albedo . Quart. J. Roy. Meteor. Soc., 101, 193- 202.
    Garand, L. 1988: Automated recognition of oceanic cloud patterns. Part I. Methodology and application to cloud climatology. J. Clim. 1, 20-39.
    Gautier, G., G. Diak, and S. Masse, 1980: A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., 19, 1005-1012.
    Gloersen, P. and F. J. Barath, 1977: A scanning multichannel microwave radiometer for Nimbus-G and Seasat-A. IEEE J. Oceanic Eng., OE-2, 172-178.
    Hay, J. E., and K. J. Hanson, 1978: A satellite-based methodology for determining solar irradiance at the oecan surface during GATA. Bull American Meteorology Soc., 59, 1549.
    Justus, C., M. V. Paris, and J. D. Tarpley, 1986: Satellite-mesured insolation in the United Stated,Mexico and South American. Remote Sensing Environment., 20, 57-83.
    Kung, E. C., R. S. Bryson, and D. H. Lenschow, 1964: Study of a continental surface albedo on the basis of flight measurements and structure of the Earth’s surface cover over North America. Monthly Weather Review. 92(12), 534-563.
    Li, Z., and L. Garand, 1994: Estimation of surface albedo from space: A parameterization for global application. J. Geophys. Res., 99, D4, 8335-8350.
    Lofgren, B. M., 1995: Surface albedo-climate feedback simulated using two-way coupling. Journal of Climate 8: 2543-2562.
    Lucht, W., A. H. Hyman, A. H. Strahler, M. J. Barnsley, P. Hobson, and J.-P. Muller, 2000: A Comparison of Satellite-Derived Spectral Albedos to Ground-Based Broadband Albedo Measurements Modeled to Satellite Spatial Scale for a Semidesert Landscape. Remote Sens. Environ. 74: 85-98.
    McClain, E. P., 1979: Satellite-derived Earth surface temperature, Chapter 3. J. S. Winston (ed.) Quantitative Meteorological Data from Satellites, Technical Note 166; WMO-No.531, World Meteor. Organ., Geneva, Switzerland, 60-68.
    McGinnis, D. F., Jr., D. R. Wiesnet, and J. A. Pritchard, 1975: Determination of snow depth and snow extent from NOAA-2 satellite very high resolution data. Water Resour. Res., 11, 897-902.
    Merritt, E. S. and C. Hall, 1973: Soil moisture estimation applications of Nimbus-3 HRIR-D (0.7-1.3μm) observations. Final Report, NOAA/NESS Contract No. 2-37098,p.19 and addend.
    Meteorological Satellite Center, 1989 : The GMS USER’s Guide, Published by Meteorological Satellite Center, Tokyo, Japan, March, 222pp.
    NASA., 1974 : Surface atmosphere extremes lauch and transportation areas. National Aeronautics and Space Administration Document SP-8084, revised June.
    O’Brien, H. W. and R. H. Munis, 1975: Red and near-infrared spectral reflectance of snow. Research Report 332, Cold Regions Research and Engineering Lab., U. S. Army Corps of Engineers, Hanover, NH, pp18.
    Perovich, D. K., and B. Elder, 2001: Temporal evolution and spational variability of the temperature of Arctic Sea ice. Ann. Glaciol., 33, 207-212.
    Phulpin, T., M. Derrien, and A. Brard, 1983: A two dimensional histogram procedure to analyze cloud cover from NOAA satellite high resolution imagery. J Clim. Appl. Meteorol, 22, 1332-1345.
    Potter, G. L., H. W. Elsasser, M. C. MacCracken, and J. S. Ellis, 1981: Albedo change by man:Test of climate effects. Nature, 291, 47-50.
    Sagan,C. 1979 : Broca's Brain: Reflections on the Romance of Science. New York,Random House ,pp416.
    Saunder, R. W. and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 9, 123-150.
    Sud, Y. C., and M. J. Fennessy, 1982 : A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J. Climatology., 2, 105-125.
    Sun, D. and R. T. Pinker, 2003 : Estimation of land surface temperature from a Geostationary Operational Environmental Satellite(GOES-8). J. Geophys. Res.,108, (D11), 4326, dio:10.1029/2002JD002422.
    Tarpley, J. D., S. R. Schneider, R. L. Money, et al., 1979: Estimating solar radiation at surface from geostationary data. J. Appl. Meteor., 18, 1172-1181.
    Townshend, J. R. G., and C. J. Tucker, 1984: Objective assessment of Advanced Very High Resolution Radiometer data for land cover mapping. Intl. J. of Remote Sens., 5, 497-504.
    Tucker, C. J., J. A. Gatlin, and S. R. Schneider, 1984: Monitoring vegetation in the Nile delta with NOAA-6 and NOAA-7 AVHRR imagry. Photogrammetric Engineering & Remote Sensing, 50, 53-61.
    Wolter, P. T., D. J. Mladenoff, G. E. Host, and T. R. Crow, 1995: Improving Classification in the Northern Lake States Using Multi-Temporal Landsat Imagery . Photogrammetric Engineering & Remote Sensing, 61, 9, 1129-1143.
    website網址:
    1 http://www.bjkp.gov.cn/gkjqy/hjkx/k10907-05.html
    2 http://isccp.giss.nasa.gov/docs/response.html
    3 http://www.cgd.ucar.edu/cas/tn404/text/tn404_4.html
    4 http://www.ncep.noaa.gov/about.html
    5 http://cdc.cma.gov.cn/text/1.doc

    QR CODE