簡易檢索 / 詳目顯示

研究生: 嚴笠哲
Yen, Li-Che
論文名稱: 不同踩踏頻率與齒輪比對踩踏力量與騎乘穩定性的影響
The Effect of Different Cadence and Gear Ratio on Pedal force and Riding Stability
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 41
中文關鍵詞: 騎乘效率能量消耗騎乘晃動
英文關鍵詞: cycling efficiency, energy consumption, body sway
DOI URL: http://doi.org/10.6345/THE.NTNU.DAP.002.2018.F03
論文種類: 學術論文
相關次數: 點閱:158下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何更有效率的騎乘自行車一直是研究者與騎乘者所關心的問題,其中使用不同踩踏頻率與齒輪比騎乘時,何種搭配具有最好的騎乘效率至今仍未有明確答案,先前研究多針對專業車手去進行探討,然而一般人在不同模式下騎乘時的踩踏效率與身體晃動造成的能量消耗仍缺乏實證性的科學證據。目的:探討一般人在不同踩踏頻率與齒輪比下騎乘時,對踏板踩踏力量及效率與身體晃動程度的影響。方法:本研究徵招12名健康男性參與者 (非自行車手),並把公路車裝上室內訓練台進行不同踏頻 (60rpm、75rpm、90rpm) 與不同種齒輪比 (53/28、53/23、53/19、53/15、53/12) 之騎乘測試。裝設於公路車左右踏板上之三軸力量感測器量測踩踏力量 (合力&有效力) 與踩踏效率,使用Vicon 3D動作分析系統與測力板分析騎乘時騎乘者與人車系統的質心 (COM) 晃動變化,收取之數據使用雙因子重複量數變異數分析不同模式下騎乘對踩踏效率與身體晃動程度的影響,並用bonferroni法進行事後比較,顯著水準訂為α=.05。結果:所有結果在不同踩踏頻率與不同齒輪比間交互作用未達顯著(p>.05)。踩踏力量的分析上,在不同齒輪比下,重齒輪比(53/12)在踩踏合力、踩踏有效力與踩踏效益皆顯著高於輕齒輪比(53/28或53/23)(p<.05),在不同踩踏頻率下,只有踩踏合力在高踏頻下顯著高於低踏頻。身體晃動與穩定性分析上,騎乘者與人車系統橫向質心晃動程度皆隨踏頻增加有顯著上升,而不同齒輪比下人體COM變化量無顯著差異。結論:對一般人而言,建議使用較重的齒輪比與較低的踩踏頻率,因齒輪比加重能有效的增加踩踏力量的效益,選擇較低的踩踏頻率在騎乘時具有較小的身體晃動,可以減少維持騎乘穩定的能量消耗。

    How to ride more efficiently is a question that researchers and coaches have been concerned about for a long time; however, which combination of cadence and gear ratio has the best efficiency still has no clear answer. Many previous studies focused on the pedaling efficiency of professional cyclists. Whereas, the pedal efficiency and energy expenditure from body movement of non-cyclists riding in different modes still lack evidence base. Purpose: To explore the influence of different cadences and different gear ratios on pedaling force, pedaling efficiency and the variety of body movement in non-cyclists. Methods: Twelve healthy male participants (non-cyclists) were involved in this study. A road bike was set on an indoor bike trainers for the cycling test with different cadences (60 rpm, 75 rpm, 90 rpm) and gear ratios (53/28, 53/23, 53/19, 53/15, 53/12). Two 3-axis load cell were installed on the road bike pedal to measure pedaling force (resultant force (RF) & effectiveness force (EF)) and pedaling efficiency. The Vicon 3D motion analysis system and the force-plate were used to analyze the shifting of center of mass (COM) between cyclist and cyclist-bike system. After collecting the data, repeated measured two-way ANOVA was used to detect the differences of pedaling efficiency and the variety of body sway among different cadences and gear ratios of cycling. For post-hoc, bonferroni method was implied, with the significant level set at α = .05.Results: There was no significant interaction between different cadences and gear ratios (p> .05). In the analysis of pedaling force, between different gear ratios, RF, EF and pedal efficiency at the heavy gear ratio (53/12) were significantly higher than the light gear ratio(53/28 or53/23) (p <. 05). In different cadences, RF at high cadence (90rpm) is significantly higher than low cadence (60rpm). For body sway and stability, the lateral axis of COM shifting between cyclists and the cyclist-bike system both increased significantly with the increase of cadence(p<.05).But there was no significant difference in cyclist COM variation from different gear ratios. Conclusion: For non-cyclists, it is recommended to use a higher gear ratio and lower cadence. When gear ratio increases, it effectively increases the efficiency of pedaling. Selecting lower cadence could cause less body movement while cycling, further reducing the energy consumption to maintain stability during cycling.

    中文摘要 i 英文摘要 ii 謝誌 iv 目次 v 表次 viii 圖次 ix 第壹章 緒論 1 第一節 研究背景 1 第二節 研究問題 3 第三節 研究目的 4 第四節 研究假設 4 第五節 研究範圍與限制 4 第六節 研究之重要性 4 第七節 名詞操作定義 5 第貳章 文獻探討 7 第一節 騎乘效率的評估方法 7 第二節 不同策略下對踩踏效率的影響 9 第三節 身體穩定性對騎乘的影響 11 第四節 文獻總結 12 第參章 研究方法 14 第一節 實驗參與者 14 第二節 實驗設備 14 第三節 實驗設計 16 第四節 實驗步驟 17 第五節 資料處理 19 第六節 統計分析 21 第肆章 結果 22 第一節 不同踩踏頻率與齒輪比下踩踏力量與踩踏效益分析 22 1.踩踏合力分析 22 2.踩踏有效力分析 23 3.踩踏效益分析 24 第二節 不同踩踏頻率與齒輪比下身體晃動程度與騎乘穩定性分析 25 1.身體騎乘晃動分析 25 2.人車系統晃動程度 26 3.騎乘穩定性分析 27 第伍章 討論 28 第一節 不同踩踏頻率與齒輪比對踩踏力量與效益的影響 28 第二節 不同踩踏頻率與齒輪比對騎乘穩定性的影響 30 第三節 結論與建議 33 引用文獻 34 附錄 39 附錄一 實驗參與者須知 39 附錄二 實驗參與者同意書 40 附錄三 實驗參與者基本資料表 41

    Baum, B. S., & Li, L. (2003). Lower extremity muscle activities during cycling are influenced by load and frequency. Journal of Electromyography and Kinesiology, 13(2), 181-190. doi:10.1016/s1050-6411(02)00110-4

    Bini, R. R., & Diefenthaeler, F. (2010). Kinetics and kinematics analysis of incremental cycling to exhaustion. Sports Biomechanics, 9(4), 223-235.

    Bulsink, V. E., b, H. K., Belt, D. v. d., Bonnema, G. M., & Koopman, B. (2016). Cycling strategies of young and older cyclists. Human Movement Science, 46, 184-195.

    Cain, S. M., Ashton-Miller, J. A., & Perkins, N. C. (2016). On the skill of balancing while riding a bicycle. PLoS One, 11(2). doi:10.1371/journal.pone.0149340

    Candotti, C. T., Ribeiro, J., Soares, D. P., De Oliveira, A. R., Loss, J. F., & Guimarães, A. C. (2007). Effective force and economy of triathletes and cyclists. Sports Biomechanics, 6(1), 31-43.

    Costes, A., Turpin, N. A., Villeger, D., Moretto, P., & Watier, B. (2015). A reduction of the saddle vertical force triggers the sit-stand transition in cycling. Journal of Biomechanics, 48(12), 2998-3003. doi:10.1016/j.jbiomech.2015.07.035

    Coyle, E. F., Feltner, M. E., Kautz, S. A., Hamilto, M. T., Montain, S. J., Baylor, A. M., . . . Petrek, G. W. (1991). Physiological and biomechanical factors associated with elite endurance cycling performance. Medicine & Science in Sports & Exercise, 23(1), 93-107.

    Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857-865. doi:10.1016/j.jelekin.2007.03.002

    Duc, S., Bertucci, W., Pernin, J. N., & Grappe, F. (2008). Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18(1), 116-127. doi:10.1016/j.jelekin.2006.09.007

    Ericson, M. O., & Nisell, R. (1988). EYciency of pedal forces during ergometer cycling. International Journal of Sports Medicine, 9, 118-122.

    Fregly, B. J., Zajac, F. E., & Dairaghi, C. A. (2000). Bicycle drive system dynamics: theory and experimental validation. Journal of Biomechanical Engineering., 122(4), 446-452.

    Gouwanda, D., & Senanayake, S. M. (2011). Identifying gait asymmetry using gyroscopes--a cross-correlation and Normalized Symmetry Index approach. Journal of Biomechanics, 44(5), 972-978.

    Hansen, E. A., Jorgensen, L. V., Jensen, K., Fregly, B. J., & Sjogaard, G. (2002). Crank inertial load affects freely chosen pedal rate during cycling. Journal of Biomechanics, 35(2), 277-285.

    Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: A review. Journal of Electromyography and Kinesiology, 19(2), 182-198. doi:10.1016/j.jelekin.2007.10.010

    Kautz, S. A., & Hull, M. L. (1993). A theoretical basis for interpreting the force applied to the pedal in cycling. Journal of Biomechanics, 26(2), 155-165.

    Korff, T., Romer, L. M., Mayhew, I., & Martin, J. C. (2007). Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Medicine and Science in Sports and Exercise, 39(6), 991-995. doi:10.1249/mss.0b013e318043a235

    Lafond, D., Duarte, M., & Prince, F. (2004). Comparison of three methods to estimate the center of mass during balance assessment. Journal of Biomechanics, 37(9), 1421-1426. doi:10.1016/s0021-9290(03)00251-3

    Lafortune, M. A., & Cavanagh, P. R. (1983). Effectiveness and efficiency during bicycle riding. Matsui & Kobashi K (Ed.) Biomechanics VIII-B. Champaign, Il: Human Kinetics, 928-936.

    Leirdal, S., & Ettema, G. (2011). Pedaling technique and energy cost in cycling. Medicine and Science in Sports and Exercise, 43(4), 701-705. doi:10.1249/MSS.0b013e3181f6b7ea

    Loras, H., Leirdal, S., & Ettema, G. (2009). Force effectiveness during cycling at different pedaling rates. Journal of Applied Biomechanics, 25, 85-92.

    Lucía, A., Hoyos, J., & Chicharro, J. L. (2001). Preferred pedalling cadence in professional cycling. Medicine and Science in Sports and Exercise, 33(8), 1361-1366.

    Maclntosh, B. R., Naptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine and Science in Sports and Exercise, 32(7), 1281-1287.

    Marsh, A. P., & Martin, P. E. (1995). The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Medicine and Science in Sports and Exercise, 27(2), 217-225.

    Mitchell, W. K., Williams, J., Atherton, P., Larvin, M., Lund, J., & Narici, M. (2012). Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in Physiology, 3(11), 260. doi:10.3389/fphys.2012.00260

    Mognoni, P., & di Prampero, P. E. (2003). Gear, inertial work and road slopes as determinants of biomechanics in cycling. European Journal of Applied Physiology, 90(3-4), 372-376. doi:10.1007/s00421-003-0948-6

    Moore, J. K., Kooijman, J. D. G., Schwab, A. L., & Hubbard, M. (2010). Rider motion identification during normal bicycling by means of principal component analysis. Multibody System Dynamics, 25(2), 225-244. doi:10.1007/s11044-010-9225-8

    Mornieux, G., Stapelfeldt, B., Gollhofer, A., & Belli, A. (2008). Effects of pedal type and pull-up action during cycling. International Journal of Sports Medicine, 29(10), 817-822. doi:10.1055/s-2008-1038374

    Neptune, R. R., & Herzog, W. (1999). The association between negative muscle work and pedaling rate.pdf. Journal of Biomechanics, 32(10), 1021-1026.

    Patterson, R. P., & Moreno, M. I. (1990). Bicycle pedalling forces as a function of pedalling rate and power output. Medicine and Science in Sports and Exercise, 22(4), 512-516.

    Poirier, E., Do, M., & Watier, B. (2007). Transition from seated to standing position in cycling allows joint moment minimization. Journal of Sports Sciences(22), 190-195.

    Porcari, J. P., Zedaker, J. M., Naser, L., & Miller, M. (1998). Evaluation of an elliptical exerciser in comparison to treadmill walking and running, stationary cycling, and stepping. Medicine and Science in Sports and Exercise, 30(5), 168.

    Priego Quesada, J. I., Perez-Soriano, P., Lucas-Cuevas, A. G., Salvador Palmer, R., & Cibrian Ortiz de Anda, R. M. (2017). Effect of bike-fit in the perception of comfort, fatigue and pain. Journal of Sports Sciences, 35(14), 1459-1465. doi:10.1080/02640414.2016.1215496

    Rossato, M., Bini, R. R., Carpes, F. P., Diefenthaeler, F., & Moro, A. R. (2008). Cadence and workload effects on pedaling technique of well-trained cyclists. International Journal of Sports Medicine, 29(9), 746-752. doi:10.1055/s-2008-1038375

    Rylands, L. P., Roberts, S. J., & Hurst, H. T. (2017). Effect of gear ratio on peak power and time to peak power in BMX cyclists. European Journal of Sport Science, 17(2), 127-131. doi:10.1080/17461391.2016.1210237

    Rylands, L. P., Roberts, S. J., Hurst, H. T., & Bentley, I. (2017). Effect of cadence selection on peak power and time of power production in elite BMX riders: A laboratory based study. Journal of Sports Sciences, 35(14), 1372-1376. doi:10.1080/02640414.2016.1215491

    Sanderson, D. J. (1991). The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists. Journal of Sports Sciences, 9(2), 191-203. doi:10.1080/02640419108729880

    Sanderson, D. J., & Black, A. (2003). The effect of prolonged cycling on pedal forces. Journal of Sports Sciences, 21(3), 191-199. doi:10.1080/0264041031000071010

    Strutzenberger, G., Wunsch, T., Kroell, J., Dastl, J., & Schwameder, H. (2014). Effect of chainring ovality on joint power during cycling at different workloads and cadences. Sports Biomechanics, 13(2), 97-108. doi:10.1080/14763141.2014.908946

    Tiller, N. B., Price, M. J., Campbell, I. G., & Romer, L. M. (2017). Effect of cadence on locomotor-respiratory coupling during upper-body exercise. European Journal of Applied Physiology, 117(2), 279-287. doi:10.1007/s00421-016-3517-5

    Watier, B., Costes, A., & Turpin, N. A. (2017). Modification of the spontaneous seat-to-stand transition in cycling with bodyweight and cadence variations. Journal of Biomechanics, 63(3), 61-66. doi:10.1016/j.jbiomech.2017.08.003

    Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2016). The effect of low- vs high-cadence interval training on the freely chosen cadence and performance in endurance-trained cyclists. Applied Physiology, Nutrition, Metabolism., 41(6), 666-673.

    Zameziati, K., Mornieux, G., Rouffet, D., & Belli, A. (2006). Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power. European Journal of Applied Physiology, 96(3), 274-281. doi:10.1007/s00421-005-0077-5

    Zatsiorsky, V. M., & King, D. L. (1998). An algorithm for determining gravity line location from posturographic recordings. Journal of Biomechanics, 31, 161-164.

    下載圖示
    QR CODE