研究生: |
李昆哲 Lee, Kun-Zhe |
---|---|
論文名稱: |
介電質光子晶體反射性質之研究 Studies of The Reflection Properties of Dielectric Photonic Crystal |
指導教授: |
吳謙讓
Wu, Chien-Jang |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 光子晶體 、反射 |
英文關鍵詞: | photonic crystal, reflection |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文旨在討論介電質光子晶體的反射性質,共有四大主題。第一,吾人藉由不同材料,來探討其橫向電波與橫向磁波的最大反射差,並找出其對應的入射角。第二,我們利用串接法來擴大一維光子晶體的全方向反射區域,並透過不同的串接排序,試圖找出最有效的擴大方式。其次,我們利用量子井來擴大一維光子晶體的全方向反射區域,我們發現透過這樣的方法,確實可以達到擴大的效果,但是有其極限。最後,同樣是利用量子井的概念,一維光子晶體可以設計出多通道濾波器,藉以使用在通訊系統上。
We studied the reflection properties of dielectric photonic crystals, and there are totally four topics in this thesis. First, we used different interfaces to study the maximum reflectance difference of s- and p- polarizations, and we also found the relative incident angles. Second, we enlarged the omni-directional reflection range by cascading one dimensional photonic crystals, and we used different order of ranking photonic crystals to find the most effective order to enlarge the range. Third, we extended the omni-directional reflection range by adding photonic quantum well structure. Although one can broaden the omni-directional reflection range by adding photonic quantum well, we found this method has limitation. Finally, we used photonic quantum well structure to design filter. We found that the number of confined states is equal to the number of the added layers, and it could be useful in communications.
References
[1] J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes" (PDF), Phil. Mag 26: 256–265,(1888).
[2] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics" (PDF), Physical Review Letters 58 (20): 2059–2062,(1987).
[3] S. John, "Strong localization of photons in certain disordered dielectric superlattices" (PDF), Physical Review Letters 58 (23): 2486–2489,(1987).
[4] E. Yablonovitch, T.J. Gmitter, K.M. Leung, E; Gmitter, TJ; Leung, KM, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms" (PDF), Physical Review Letters 67 (17): 2295–2298,(1991).
[5] T. F. Krauss, R. M. DeLaRue, S. Brand, Rue Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths", Nature 383 (6602): 699-702,(1996).
[6] Review: S. Johnson (MIT) "Lecture 3: Fabrication technologies for 3d photonic crystals, a survey" (PDF).
[7]Frank L. Pedrotti, S. J. Leno S. Pedrotti, Leno M. Pedrotti, "Introduction to Optics", third edition, Pearson,(2007).
[8]M. Born and E. Wolf, Principles of Optics (Cambridge, 1999).
[9] R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland,1987).
[10] J. Lekner, Theory of Reflection (Martinus, Nijhoff, 1987).
[11] R. H. Muller, “Definitions and conventions in ellipsometry,” Surf. Sci. 16,(1969).
[12] R. M. A. Azzam,” Maximum reflectance difference for incident
p- and s-polarized light at air-dielectric interfaces,” Appl. Opt. 27,(2014).
[13] P. Yeh, "Optical Waves in Layered Media", John Wiley & Sons,(1991).
[14] C. M. Soukoulis, Photonic band gaps and localization,NATO ARW, Plenum, New York, (1993).
[15] W. Gellerman, M. Kohmoto, B. Sutherland, P. C.Taylor, Phys. Rev. Lett. 72, 633 (1987).
[16] C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z.Zhang, S. Z. Ban, B. Sun, Appl. Phys. Lett. 75, 1848(1999).
[17] P. Han, H. Z. Wang, Chin. Phys. Lett. 20, 1520(2003).
[18] E. Macia, Appl. Phys. Lett. 73, 3330 (1998).
[19] M. Kohmoto, B. Sutherland, R. Clarke, K. Iguchi,Phys. Rev. Lett. 58, 2436 (1987).
[20] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D.Joannopoulos, E. L. Thomas, Science 282, 1679(1998).
[21] J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos,Optics Lett. 23, 1573 (1998).
[22] B. Gallas, S. Fission, E. Charron, A. Brunet-Bruneau, R. Vuye, J. Revory, Appl. Opt. 40, 5056 (2001).
[23] K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K.Wada, L. C. Kimerling, Appl. Phys. Lett. 73, 3330(1998).
[24] D. N. Chigrin, A. V. Levrinenko, D. A. Yarotsky, S.V. Gaponeko, Appl. Phys. A: Mater. Sci. Process. 68,25 (1999).
[25] D. N. Chigrin, A. V. Levrinenko, D. A. Yarotsky, S.V. Gaponeko, J. Lightwave Tech. 17, 2018 (1999).
[26] K. B. Thapa, S. K. Singh, S. P. Ojha, Int. J. Infrared Milli. Waves 27, 1557 (2006).
[27] S. K. Singh, K. B. Thapa, S. P. Ojha, Optoelectronics and advanced materials-rapid communications 1(2),49 (2007).
[28] V. Kumar, Kh. S. Singh, S. P. Ojha, G. Singh, M. Anis,” Enlargement of omni-directional reflection range by cascading photonic crystals”, Optoelectronics
and advanced materials-rapid communications Vol. 4, p. 449-452,(2010).
[29] X. Wang, X. Hu, Y. Li, W. Zia, C. Xu, X. Liu, J. Zi, Appl. Phys. Lett., 80, 4291, (2002).
[30] V. Kumar, A. Kumar, Kh. S. Singh, P. Kumar, “Broadening of omni-directional reflection range by cascade 1D photonic crystal”, Optoelectronics and advanced materials-rapid communications Vol. 5, p. 488-490, (2011).
[31] L. Esaki and R. Tus, IBM J. Res. Dev. 14, 61 (1970).
[32] Physics and Applications of Quantum Wells and Superlatitices, NATO
ASI, edited by E. E. Mendez and K. von Klitzing, Plenum, New York,(1987).
[33] Feng Qiao, Chun Zhang, and Jun Wan,”Photonic quantum-well structures: Multiple channeled filtering phenomena”, applied physics letters, vol. 77 (2000).