研究生: |
黃紹瑜 Huang, Shao-Yu |
---|---|
論文名稱: |
透過矽烷偶合反應對金屬有機骨架進行疏水性修飾並應用於二氧化碳捕捉 Hydrophobic Modification of Al-Metal-Organic Frameworks by Silane Coupling Reaction for CO2 capture |
指導教授: |
林嘉和
Lin, Chia-Her |
口試委員: |
林嘉和
Lin, Chia-Her 李君婷 Li, Chun-Ting 楊仲準 Yang, Chun-Chuen 詹益慈 Chan, Yi-Tsu |
口試日期: | 2024/06/04 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 鋁金屬有機骨架 、矽烷化合物 、二氧化碳捕捉 、疏水性 |
英文關鍵詞: | Al-Metal-Organic-Framework, Silane Compound, Carbon Dioxide Capture, Hydrophobicity |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400816 |
論文種類: | 學術論文 |
相關次數: | 點閱:115 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MOFs因優秀的吸附能力、吸附選擇性及再生性,使其在捕獲二氧化碳十分有前景。然而,由於MOFs對於水氣的低穩定性及水與二氧化碳產生的競爭吸附,極大程度的影響其在真實煙道氣環境下的二氧化碳吸附量及選擇性。現今科學家們致力於研究各種策略去降低水氣對於MOF的影響,研究結果顯示,增加MOF的疏水性是一種有效降低水氣影響的方法。
在本研究中,經過矽烷化合物的合成後修飾及乙醚洗滌的過程後,所選用的MOF均由親水性轉變為疏水性物質,且仍保有其二氧化碳捕捉能力,分別為:MIL-160的WCA從16 o變為148 o;MOF-303的WCA從13 o變為141 o;MIL-53-TDC的WCA從20 o變為136 o;CAU-23的WCA從14 o變為132 o。二氧化碳捕捉能力則分別為:MIL-160從原本的3.64變為3.69 mmol/g;MOF-303從原本的5.06變為4.47 mmol/g;MIL-53-TDC從原本的2.11變為2.63 mmol/g;CAU-23修飾前後數值不變,均為3.08 mmol/g。
MOFs are considered to have great potential in capturing CO2 due to their excellent adsorption capacity, selectivity, and regenerability. However, the MOF’s low stability of H2O and the competitive adsorption between H2O and CO2 significantly impact their CO2 adsorption capacity and selectivity in flue gas environments. Currently, scientists are striving to study various strategies to mitigate the impact of moisture on MOFs, and Many paper show that increasing the hydrophobicity of MOFs is an effective approach.
In this study, through the post-modification with silane compounds, and ether washing process, the hydrophilic MOFs have transformed to hydrophobic materials while still retaining their CO2 adsorption capabilities. The WCA of MIL-160 increased from 16 o to 148 o; MOF-303 increased from 13 o to 141 o; MIL-53-TDC increased from 20 o to 136 o; CAU-23 increased from 14 o to 132 o. The CO2 adsorption capacities are as follows: MIL-160 increased from 3.64 mmol/g to 3.69 mmol/g; MOF-303 decreased from 5.06 mmol/g to 4.47 mmol/g; MIL-53-TDC increased from 2.11 mmol/g to 2.63 mmol/g; CAU-23 remained unchanged at 3.08 mmol/g before and after modification.
[1]. Turgut, M. G. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Prog. Energy Combust. Sci. 2022, 89, 100965.
[2]. Zhang, S.; Liu, L.; Zhang, L.; Zhuang, Y.; Du, J. An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China. Appl. Energy 2018, 231(1), 194-206.
[3]. Kearns, D.; Liu, H.; Consoli, C. Technology Readiness and Costs of CCS. Global CCS Institute 2021, 3.
[4]. Dutcher, B.; Fan, M.; Russell, A. G. Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review. ACS Appl. Mater. Interfaces 2015, 7(4), 2137–2148.
[5]. Kumar, S.; Srivastava, R.; Koh, J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. J. CO2 Util. 2020, 41, 101251.
[6]. Loganathan, S.; Tikmani, M.; Ghoshal, A. K. Novel pore-expanded MCM-41 for CO2 capture: synthesis and characterization. Langmuir 2013, 29(10), 3491-3499.
[7]. Abd, A. A.; Othman, M. R.; Kim, J. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement. Environ. Sci. Pollut. Res. 2021, 28(32), 43329-43364.
[8]. Ghanbari, T.; Abnisa, F.; Daud, W. M. A. W. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 2020, 707, 135090.
[9]. Gunawardene, O. H.; Gunathilake, C. A.; Vikrant, K.; Amaraweera, S. M. Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. Atmosphere 2022, 13(3), 397.
[10]. Berger, A. H.; Bhown, A. S. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 2011, 4, 562-567.
[11]. Dhankhar, S. S.; Sharma, N.; Kumar, S.; Kumar, T. J. D.; Nagaraja, C. M. Rational Design of a Bifunctional, Two-Fold Interpenetrated ZnII-Metal–Organic Framework for Selective Adsorption of CO2 and Efficient Aqueous Phase Sensing of 2,4,6-Trinitrophenol. Chem. Eur. J. 2017, 23, 16204-16212.
[12]. Kitagawa, S.; Zhou, H. C. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
[13]. Mendes, R. F.; Paz, F. A. A. Transforming Metal–Organic Frameworks into Functional Materials. Inorg. Chem. Front. 2015, 2 (6), 495-509.
[14]. Yu M. H.; Zhang P.; Feng R.; Yao Z. Q.; Yu Y. C.; Hu T. L.; Bu X. H. Construction of a Multi-Cage-Based MOF with a Unique Network for Efficient CO2 Capture. ACS Appl. Mater. Interfaces 2017, 9(31), 26177–26183.
[15]. Wang H. H.; Hou L.; Li Y. Z.; Jiang C. Y.; Wang Y. Y.; Zhu Z. H. Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO2. ACS Appl. Mater. Interfaces 2017, 9(21), 17969-17976.
[16]. Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120(3), 325-330.
[17]. Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal–organic frameworks. Ind. Eng. Chem. Res. 2012, 51(18), 6513-6519.
[18]. Karra, J. R.; Grabicka, B. E.; Huang, Y. G.; Walton, K. S. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal–organic framework (MOF-14). J. Colloid Interface Sci. 2013, 392, 331-336.
[19]. Sharma, R.; Sürmeli, D.; Van Assche, T. R. C.; Tiriana, S.; Delplancke, M.-P.; Baron, G. V.; Denayer, J. F. M. An ultra-permeable hybrid Mg-MOF-74-Melamine sponge composite for fast dynamic gas separation. Microporous Mesoporous Mater. 2022, 343, 112146.
[20]. Li, Z.; Shi, K.; Zhai, L.; Wang, Z.; Wang, H.; Zhao, Y.; Wang, J. Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Sep. Purif. Technol. 2023, 307, 15, 122725.
[21]. Lin, J.-B.; Nguyen, T. T. T.; Vaidhyanathan, R.; Burner, J.; Taylor, J. M.; Durekova, H.; Akhtar, F.; Mah, R. K.; Ghaffari-Nik, O.; Marx, S.; Fylstra, N.; Iremonger, S. S.; Dawson, K. W.; Sarkar, P.; Hovington, P.; Rajendran, A.; Woo, T. K.; Shimizu, G. K. H. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021, 374 (6574), 1464-1469.
[22]. Evans, H. A.; Mullangi, D.; Deng, Z.; Wang, Y.; Peh, S. B.; Wei, F.; Wang, J.; Brown, C. M.; Zhao, D.; Canepa, P.; Cheetham, A. K. Aluminum formate, Al(HCOO)3: An earth-abundant, scalable, and highly selective material for CO2 capture. Sci. Adv. 2022, 8(44), eade1473.
[23]. Jansen, C.; Tannert, N.; Lenzen, D.; Bengsch, M.; Millan, S.; Goldman, A.; Jordan, D. N.; Sondermann, L.; Stock, N.; Janiak, C. Unravelling gas sorption in the aluminum metal‐organic framework CAU‐23: CO2, H2, CH4, SO2 sorption isotherms, enthalpy of adsorption and mixed‐adsorptive calculations. Z. Anorg. Allg. Chem. 2022, 648(17), e202200170.
[24]. Jajko, G.; Kozyra, P.; Gutiérrez‐Sevillano, J. J.; Makowski, W.; Calero, S. Carbon Dioxide Capture Enhanced by Pre‐Adsorption of Water and Methanol in UiO‐66. Chem.–Eur. J. 2021, 27(59), 14653-14659.
[25]. Hu, L.; Wu, W.; Jiang, L.; Hu, M.; Zhu, H.; Gong, L.; Yang, J.; Lin, D.; Yang, K. Methyl-Functionalized Al-Based MOF ZJU-620(Al): A Potential Physisorbent for Carbon Dioxide Capture. ACS Appl. Mater. Interfaces 2023, 15(37), 43925–43932.
[26]. Babar, M.; Mubashir, M.; Mukhtar, A.; Saqib, S.; Ullah, S.; Bustam, M. A.; Show, P. L. Sustainable functionalized metal-organic framework NH2-MIL-101 (Al) for CO2 separation under cryogenic conditions. Environ. Pollut. 2021, 279, 116924.
[27]. Ding, N.; Li, H.; Feng, X.; Wang, Q.; Wang, S.; Ma, L.; Zhou, J.; Wang, B. Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. J. Am. Chem. Soc. 2016, 138(32), 10100-10103.
[28]. Park, J. M.; Yoo, D. K.; Jhung, S. H. Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chem. Eng. J. 2020, 402, 126254.
[29]. Wang, B.; Huang, H.; Lv, X. L.; Xie, Y.; Li, M.; Li, J. R. Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization. Inorg. Chem. 2014, 53(17), 9254-9259.
[30]. Damasceno Borges, D.; Normand, P.; Permiakova, A.; Babarao, R.; Heymans, N.; Galvao, D. S.; Serre, C.; Weireld, G. D.; Maurin, G. Gas adsorption and separation by the Al-based metal–organic framework MIL-160. J. Phys. Chem. C 2017, 121(48), 26822-26832.
[31]. Sanli, D.; Erkey, C. Silylation from supercritical carbon dioxide: a powerful technique for modification of surfaces. J. Mater. Sci. 2015, 50, 7159-7181.
[32]. Liu, H.; Kang, Y. Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil/water separation. Appl. Surf. Sci. 2018, 451, 1, 223-231.
[33]. Li, H.; Luo, Y.; Yu, F.; Zhang, H. In-situ construction of MOFs-based superhydrophobic/superoleophilic coating on filter paper with self-cleaning and antibacterial activity for efficient oil/water separation. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 625, 126976.
[34]. Nuraje, N.; Khan, W. S.; Lei,Y.; Ceylan, M.; Asmatulu, R. Superhydrophobic electrospun nanofibers. J. Mater. Chem. A 2013, 1, 1929-1946.
[35]. Stavitski, E.; Goesten, M.; Juan‐Alcañiz, J.; Martinez‐Joaristi, A.; Serra‐Crespo, P.; Petukhov, A. V.; Gascon, J.; Kapteijn, F. Kinetic Control of Metal–Organic Framework Crystallization Investigated by Time‐Resolved In Situ X‐Ray Scattering. Angew. Chem. 2011, 123(41), 9798-9802.
[36]. Xu, Q., Fang, L., Fu, Y., Xiao, Q., Zhang, F., & Zhu, W. Synthesis, characterization, and CO2 adsorption properties of metal–organic framework NH2–MIL–101 (V). Mater. Lett. 2020, 264, 127402.
[37]. Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. Synthesis and characterization of an amino functionalized MIL-101 (Al): separation and catalytic properties. Chem. Mater. 2011, 23(10), 2565-2572.