簡易檢索 / 詳目顯示

研究生: 劉超凡
Chao-Fan Liu
論文名稱: 共同表現IgG結合蛋白可增進VP1重組蛋白質作為腸病毒食用疫苗的潛力
Co-expression of IgG-binding protein enhances the potential of recombinant VP1 protein as edible vaccine for EV71-associated hand, foot, and mouth disease
指導教授: 王玉麒
Wang, Yu-Chie
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 腸病毒71型次單元體疫苗黏膜性佐劑IgG結合蛋白
英文關鍵詞: enterovirus 71, subunit vaccine, mucosal adjuvant, IgG-binding protein
論文種類: 學術論文
相關次數: 點閱:123下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒71型(EV71)是造成手足口病(HFMD)的主要病原體之一,兒童感染後可能會引發嚴重的神經併發症而導致死亡,由於目前尚無專門對抗EV71的藥物或治療方式,因此發展疫苗被認為是控制腸病毒疫情的重要手段。本研究將EV71的VP1基因分別與FAI3及Mig(IgG)兩種IgG結合蛋白的基因進行融合,並藉大腸桿菌表現生產rVP1、rVP1-FAI3及rVP1-Mig(IgG)三種重組蛋白質,以對小鼠進行口服疫苗測試。結果顯示,這三種重組蛋白質的餵食處理皆能使小鼠糞便內及血液中的VP1抗體效價提升,並呈現典型的一級和二級免疫反應情形,證實這些重組蛋白質的餵食處理不僅能激活小鼠的黏膜性及系統性免疫反應,並能促使小鼠體內產生針對VP1抗原的記憶性B細胞。三種重組蛋白質的餵食處理中,融合蛋白[rVP1-Mig(IgG)及rVP1-FAI3]餵食組的VP1抗體效價明顯高於rVP1餵食組:在血液中,前者為後者的1.47~2.02倍;在糞便內,前者則為後者的2.04~2.62倍。這些結果顯示FAI3及Mig(IgG)具有黏膜性佐劑的性質,共同表現這兩種IgG結合蛋白將可增進rVP1作為腸病毒口服疫苗的功效。本研究經由ELISA及細胞染色的實驗,已證實rVP1-FAI3及rVP1-Mig(IgG)能與小鼠的IgG及脾臟細胞表面結合,而小鼠與人類IgG CH2-CH3 domain的胺基酸序列有高達70%的相同度,因此我們推論FAI3及Mig(IgG)兩種IgG結合蛋白具有應用於開發人類口服疫苗的潛力。

    Enterovirus 71 (EV71) is the main infective agent of hand, foot and mouth disease (HFMD) and may cause fatal neurological complications and death among young children. Due to the lack of an effective antiviral agent, developing useful vaccines is considered a top choice among all control measures. In this study, the genes encoding two IgG binding proteins, FAI3 and Mig(IgG), were fused to VP1 gene respectively, and three recombinant proteins, rVP1, rVP1-FAI3 and rVP1-Mig(IgG), was individually expressed in E. coli and used for oral immunization tests in mice. Our results revealed that feeding each of these three recombinant proteins to mice can elevate the titers of VP1 antibodies in both serum and feces, and the changing of antibody titer displays a typical pattern of primary and secondary immune responses, suggesting our feeding strategy is effective in activating both mucosal and systemic immune responses and in causing generation of specific memory B cells. Among the three recombinant proteins, fusion proteins [rVP1-Mig(IgG) and rVP1-FAI3] were found to stimulate significantly higher VP1 antibody titer, both in serum and feces, than that by rVP1. These data manifest the mucosal adjuvant property of FAI3 and Mig(IgG) and thus co-expression of these two IgG-binding proteins should be able to enhance the efficacy of rVP1 as oral vaccine for EV71. Moreover, since our results of ELISA and cell surface staining demonstrate the binding ability of rVP1-FAI3 and rVP1-Mig(IgG) to mouse IgGs and spleen cells, and since the amino acid sequence of mouse IgG CH2-CH3 domain is 70% identical to that of human’s counterpart, it is inferred that FAI3 and Mig(IgG) may also be used as mucosal adjuvant for human.

    中文摘要 1 英文摘要 2 壹、序論 3 一、手足口病 3 二、腸病毒71型 4 三、腸病毒71型疫苗的發展現況 6 四、佐劑的應用 7 五、IgG結合蛋白 9 六、疫苗的接種方式 11 七、研究目的 11 貳、研究材料與方法 12 一、表現載體的選殖、建構與轉形 12 二、重組蛋白質的誘導表現與純化 14 三、重組蛋白質的結合能力測試 18 四、小鼠的口服餵食實驗 20 五、抗血清的製作與分析 21 六、單株抗體的生產 24 七、統計分析 24 参、結果 25 一、重組VP1蛋白質(rVP1)的誘導表現與純化 25 二、VP1抗血清的生產 26 三、IgG結合蛋白的表現載體建構 27 四、重組蛋白質的誘導、確認及純化 28 五、重組蛋白對免疫球蛋白的結合力測試 29 六、三種重組蛋白質的小鼠餵食試驗 30 肆、討論 35 一、rVP1具有EV71口服疫苗的應用潛力 37 二、FAI3與Mig(IgG)兩種IgG結合蛋白具有增強免疫反應的佐劑效應 40 三、IgG結合蛋白的「佐劑效應」應源自其與IgG分子結合的能力 41 四、FAI3與Mig(IgG)對IgG的作用力具有物種間的差異性 42 五、以大腸桿菌生產VP1口服疫苗的優勢及改進 44 六、結論 45 伍、參考文獻 46 陸、圖表 51 柒、附錄 90 附錄一、腸病毒外鞘蛋白VP1 基因序列 90 附錄二、C群鏈球菌FAI基因序列 92 附錄三、減乳糖鏈球菌Mig基因序列 94 附錄四、PCR反應所使用的引子及對應位置 96 附錄五、縮寫對照表 97

    Arita, N., Shimizu, H., Nagata. N., Ami, Y., Suzaki. Y., Sata. T., Iwasaki.T.,Miyamura,T., 2005, Temperature-sensitive mutants of enterovirus 71 show Attenuation in cynomolgus monkeys. J Gen Virol 86, 1391-1401.

    Atkins, K.L., Burman, J.D., Chamberlain, E.S., Cooper, J.E., Poutrel, B., Bagby, S., Jenkins, A.T., Feil, E.J., van den Elsen, J.M., 2008, S. aureus IgG-binding proteins SpA and Sbi: host specificity and mechanisms of immune complex formation. Mol Immunol 45, 1600-1611.

    Chang, L.Y., Huang, Y.C., Lin, T.Y., 1998, Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet 352, 367-368.

    Chatproedprai, S., Theanboonlers, A., Korkong, S., Thongmee, C., Wananukul, S., Poovorawan, Y., 2010, Clinical and molecular characterization of hand-foot-and-mouth disease in Thailand, 2008-2009. Jpn J Infect Dis 63, 229-233.

    Chen, H.F., Chang, M.H., Chiang, B.L., Jeng, S.T., 2006, Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enerovirus 71, Vaccine 24, 2044-2051.

    Chen, H.L., Huang, J.Y., Chu, T.W., Tsai, T.C., Hung, C.M., Lin, C.C., Liu, F.C., Wang, L.C., Chen, Y.J., Lin, M.F., Chen, C.M., 2008, Expression of VP1 protein in the milk of transgenic mice: a potential oral vaccine protects against enterovirus 71 infection. Vaccine 26, 2882-2889.

    Chiu, C.H., Chu, C., He, C.C., Lin, T.Y., 2006, Protection of neonatal mice from lethal enterovirus 71 infection by maternal immunization with attenuated Salmonella enterica serovar Typhimurium expressing VP1 of enterovirus 71. Microbes Infect 8, 1671-1678.

    Chung, C.Y., Chen, C.Y., Lin, S.Y., Chung, Y.C., Chiu, H.Y., Chi, W.K., Lin, Y.L., Chiang, B.L., Chen, W.J., Hu, Y.C., 2010, Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine 28, 6951-6957.

    Chung, Y.C., Ho, M.S., Wu, J.C., Chen, W.J., Huang, J.H., Chou, S.T., Hu, Y.C., 2008, Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine 26, 1855-1862.

    Coombes, J.L., Siddiqui, K.R., Arancibia-Carcamo, C.V., Hall, J., Sun, C.M., Belkaid, Y., Powie, F., 2007, A functionally specialized population of mucosal CD103+ DCs induce Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-depedent mechanism. J Exp Med 204, 1757-1764.

    Cox, E., Verdonck, F., Vanrompay, D., Goddeeris, B., 2006, Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 37, 511-539.

    Cox, J.C., Coulter, A.R., 1997, Adjuvants--a classification and review of their modes of action. Vaccine 15, 248-256.
    De Magistris, M.T., 2006, Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58, 52-67.

    Deby-Dupont, G., Croisier, J.L., Camus, G., Brumioul, D., Mathy-Harter, M., Sondag, D., Deby, C., Lamy, M., 1994, Inactivation of alpha2-macroglobulin by activated human polymorphonuclear leukocytes. Mediastors Inflamm 3, 114-123.

    Fagarasan, S,. Kinoshita, K., Muramatsu, M., Ikuta, K., Honjo, T., 2001, In situ class switching and differentiation to IgA-producing cells in the gut lamina propia. Nature 413, 639-643.

    Foster, T.J, 2005, Immune evasion by staphylococci. Nat Rev Microbiol 3, 945-958.

    Harley, A.R, 1995, Human enterovirus infection. 155-161.

    Harrison, S.L., Housden, N.G., Bottomley, S.P., Cossins, A.J., Gore, M.G., 2008, Generation and expression of a minimal hybrid Ig-receptor formed between single domains from proteins L and G. Protein Expr Purif 58, 12-22.

    Heegaard, P.M., Dedieu, L., Johnson, N., Le Potier, M.F., Mockey, M., Mutinelli, F., Vahlenkamp, T., Vascellari, M., Sorensen, N.S., 2011, Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol 156, 183-202.

    Hu, Y.H., Hsu, J.TA., Huang, J.H., H, M.S., H, Y.C., 2003. Formation of enterovirus-like particke aggregates by recombinant baculoviruses co-expressing P1 and 3 CD in insect cells. Biotechnol Lett 25, 919-925

    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951, Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.

    Marciani, D.J., 2003, Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today 8, 934-943.

    Markwell, M.A., Haas, S.M., Bieber, L.L., Tlobert, N.E., 1978, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87, 206-210.

    McGhee, J.R, 2011, A mucosal gateway for vaccines. Nat Biotechnol 29, 136-138.

    Moncino, M.D., Roche, P.A., Pizzo, S.V., 1991, Characterization of human alpha 2-macroglobulin monomers obtained by reduction with dithiothreitol. Biochemistry 30, 1545-1551.

    Munro, P., Flatau, G., Lemichez, E., 2007, Intranasal immunization with tetanus toxoid and CNF1 as a new mucosal adjuvant protects BALB/c mice against lethal challenge. Vaccine 25, 8702-8706.

    Mutsch, M., Zhou, W., Rhodes, P., Bopp, M., Chen, R.T., Linder, T., Spyr, C., Steffen, R., 2004, Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 350, 896-903.

    Needham, L.K., Thelen, K., Maness, P.F., 2001, Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions. J Neurosci 21, 1490-1500.

    Neutra, M.R., Kozlowski, P.A., 2006, Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6, 148-158.

    Nielsen, K., Smith, P., Yu, W., Nicoletti,P., Elzer, P., Vigliocco, A., Silva, P., Bermudez, R., Reneria, T., Moreno,F., Ruiz, A., Massengill, C., Muenks, Q., Kenny, K, Tollersrud, T., Samartino, L., Conde, S., Draghi de Benitez, G., Gall, D., Perez, B., Rojas, X., 2004, Enzyme immunoassay for the diagnosis of brucellosis: chimeric Protein A-Protein G as a common enzyme labeled detection reagent for sera for different animal species. Vet Microbiol 101, 123-129.

    Ong, K.C., Devi, S., Cardosa, M.J., Wong, K.T., 2010, Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71 encephalomyelitis against disease. J Virol 84, 661-665.

    Ooi, M.H., Wong, S.C., Lewthwaite, P., Cardosa, M.J., Solomon, T., 2010, Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9, 1097-1105.

    Roth-Walter, F., Bohle, B., Scholl, I., Untersmayr, E., Scheiner, O., Boltz-Nitulescu, G., Gabor, F., Brayden, D.J., Jensen-Jarolim, E., 2005, Targeting antigens to murine and human M-cells with Aleuria aurantia lectin-functionalized microparticles. Immunol Lett 100, 182-188.

    Schulze, K., Goldmann, O., Medina, E., Guzman, C.A., 2008, The FAI protein of group C streptococci acts as a mucosal adjuvant by the specific targeting and activation of B cells. Int J Med Microbiol 298, 3-10.

    Schulze, K., Goldmann, O., Toppel, A., Medina, E., Guzman, C.A., 2005, The FAI protein of group C streptococci target B-cells and exhibits adjuvant activity. Vaccine 23, 1408-1413.

    Smith, H.A., Klinman, D.M., 2001, The regulation of DNA vaccines. Curr Opin Biotechnol 12, 299-303.

    Song, X.M., Perez-Casal, J., Potter, A.A., 2004, The Mig protein of Streptococcus dysgalactiae inhibits bacterial internalization into bovine mammary gland epithelial cells. FEMS Microbiol Lett 231, 33-38.

    Spickler, A.R., Roth, J.A., 2003, Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med 17, 273-281.

    Stertman, L., Strindelius, L., Sjoholm, I., 2004, Starch microparticles as an adjuvant in immunisation: effect of route of administration on the immune response in mice. Vaccine 22, 2863-2872.

    Stone, G.C., Sjobring, U., Bjorck, L., Sjoquist, J., Barber, C.V., Nardella, F.A., 1989, The Fc binding site for streptococcal protein G is in the C gamma 2-C gamma 3 interface region of IgG and is related to the sites that bind staphylococcal protein A and human rheumatoid factors. J Immunol 142, 565-570.

    Stork, R., Muller, D., Kontermann, R.E., 2007, A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel 20, 569-576.

    Talay, S.R., Grammel, M.P., Chhatwal, G.S., 1996, Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules. Biochem J 315 ( Pt 2), 577-582.

    Ueki, Y,. Goldfarb, I. S., Harindranath, N., Gore, M., Koprowski, H., Notkins, A. L., Cashli, P., 1990, Clonal analysis of a human antibody response. Quantitation of precursors of antibody-producing cells and generation and characterization of monoclonal IgM, IgG, and IgA to rabies virus. J Exp Med 171, 19-34.

    Valentin-Weigand, P., Traore, M.Y., Blobel, H., Chhatwal, S., 1990, Role of alpha 2-macroglobulin in phagocytosis of group A and C streptococci. FEMS Microbiol Lett 58, 321-324.

    Weiner, H.L., da Cunha, A.P., Quintana, F., Wu, H., 2011, Oral tolerance. Immunol Rev 241, 241-259.

    Wilson-Welder, J.H., Torres, M.P., Kipper, M.J., Mallapragada, S.K., Wannemuehler, M.J., Narasimhan, B., 2009, Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 98, 1278-1316.

    Wu, C.N., Lin, Y.C., Fann, C., Liao, N.S., Shih, S.R., Ho, M.S., 2001, Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20, 895-904.

    Wu, W.H, 2007, Human enterovirus infection. Taipei City Med J 4, 597-610.

    Ye, L., Zeng, R., Bai, Y., Roopenian, D.C., Zhu, X., 2011, Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nat Biotechnol 29, 158-163.

    Yeo, W.M., Chow, V.T., 2007, The VP1 structural protein of enterovirus 71 interacts with human ornithine decarboxylase and gene trap ankyrin repeat. Microb Pathog 42, 129-137.

    Zhang, D., Lu, J., 2010, Enterovirus 71 vaccine: close but still far. Int J Infect Dis 14, e739-743.

    Zhao, Y., Benita, Y., Lok, M., Kuipers, B., van der Ley, P., Jiskoot, W., Hennink, W.E., Crommelin, D.J., Oosting, R.S., 2005, Multi-antigen immunization using IgG binding domain ZZ as carrier. Vaccine 23, 5082-5090.

    下載圖示
    QR CODE