簡易檢索 / 詳目顯示

研究生: 林珈龍
Chia-Lung Lin
論文名稱: Rictor的相關新穎蛋白在肌肉新生中扮演的角色
RICAP, a novel associated protein of rictor, is essential in muscle myogenesis
指導教授: 林炎壽
Lin, Yenshou
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 58
中文關鍵詞: 肌肉新生分化磷酸化
英文關鍵詞: myogensis, differentiation, phosphorylation
論文種類: 學術論文
相關次數: 點閱:268下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • mTOR是一個典型的絲胺酸/蘇胺酸激脢,mTOR藉由與不同的蛋白結合而形成兩種不同的複合物,並調控不同的細胞生理如生長及代謝。 mTOR蛋白複合體1 (mTORC1) 包含 mLST8、 raptor及 mTOR,透過活化下游的蛋白 S6K1 及 4EP1調控蛋白質的合成,因此 mTORC1在調控細胞生長與增生扮演重要的角色。不同於 mTORC1,mTOR蛋白複合體2 (mTORC2) 包含 mLST8, mTOR, mSin1, PRR5 及 rictor。mTORC2 的下游蛋白目前已知道有PKCα, SGK1, 及 Akt,而 mTORC2最主要的功能與細胞骨架的排列有關,然而 mTORC2的訊息傳遞路徑至今還不是很明確。在我們過去的實驗中發現,於小鼠胚胎纖維母細胞將 rictor的基因剔除,利用 rictor抗體執行對野生型及剔除型細胞液的免疫沉澱法,配合質譜儀的分析後,發現一個蛋白與 rictor結合,並暫時命名為 RICAP。實驗的目的是探討 rictor及RICAP兩蛋白之間的關係。 首先,以免疫沉澱法證明內生性的 rictor及 RICAP有相互的結合,進一步利用重組基因蛋白的表現配合免疫沉澱法,我們確認 RICAP胺基酸 1~500的區段會與 rictor結合。在功能方面的研究,使用RNAi的方法,將 rictor及 RICAP 的蛋白質量減少時,發現導致 mTORC2下游蛋白 SGK1 S422位點的磷酸化程度下降,而不是 Akt S473與 PKCα S657,同時小鼠肌纖維母細胞分化成肌纖維或肌小管的效率大大降低,我們提出一假說即 RICAP可能在 mTORC2媒介了 SGK1的活性來調控了對肌肉細胞的分化,此為 mTORC2訊息傳遞範疇一重大突破。

    Mammalian target of rapamycin (mTOR) is a typical Ser/Thr kinase which forms two distinct complexes by associating with different components. The mTORC1 includes mLST8, mTOR, and raptor. It affects protein synthesis by phosphorylating its downstream substrates S6K1 and 4EP1. Therefore, it plays a major role in cell growth and is found to be deregulated in many tumors. The other one is mTORC2 which contains mLST8, mTOR, mSin1, PRR5 and rictor. It could regulate PKCα, SGK1, and Akt and affect actin polymerization and cell morphology. Nevertheless, the signal transduction pathway regarding of mTORC2 remains largely unknown. Utilizing mouse embryonic fibroblast (MEF) cells in which rictor gene was knocked out, we performed a series of experiments including immunoprecipitation and mass/spec analysis and found a novel rictor associated protein, temporarily named RICAP. The association between endogenous RICAP and endogenous rictor was further verified by using immunoprecipitation. Furthermore, RICAP aa 1~500 was associated with rictor by pull-down assay. SGK1 phosphorylation on S422 induced by insulin, but not Akt S473 and PKCα S657, is blocked both in rictor and RICAP knock down in C2C12 myoblast. This indicates that rictor and RICAP could have a common effect on SGK1, not other mTORC2 downstream molecules. Using specific bio-marker tropomyosin in immunocytochemistry, we also found that both rictor and RICAP RNAi decrease the differentiation efficacy of C2C12 myotubes. Thus, we hypothesize that RICAP might play a role in the mTORC2-mediated SGK1 activity which results in the regulation of muscle differentiation. Taken together, we explore a novel molecule mediating the mTORC2 signaling pathway.

    Abstract (Chinese)……………………………………………………......1 Abstract (English)………………………………………………………...3 Introduction………………………………………………………………5 Materials and Methods………………………………………………….13 Results…………………………………………………………………..19 Discussion……………………………………………………………….24 References………………………………………………………....……28 Figures 1. Endogenous rictor is associated with endogenous RICAP in HEK 293 T cells………………………..………38 Figures 2. RICAP aa 1~532 is mapped to associate with rictor in HEK 293T cells………………………………...……….40 Figures 3. Verification and semi-quantitation of protein/fragments of RICAP expression from E.coli………………...………..42 Figures 4. The fragment of RICAP amino acid 1~500 is associated with endogenous rictor…………………………...………..44 Figures 5. Rictor does not cycle between cytoplasm and nucleus…….46 Figures 6. Verifying the efficacy of phosphorylated antibodies such as Akt, SGK1 and PKCα………………………...…...48 Figures 7. RICAP affected insulin-induced SGK1 phosphorylation on S422 as rictor does……………………………...………50 Figures 8. Myotube specific protein tropomyosin could be a C2C12 differentiation bio-marker…………………...…..52 Figures 9. Differentiation of C2C12 myotubes are inhibited by depletion of rictor or RICAP……………...……………….54 Figures 10. RICAP and rictor knockdown decreased the efficiency of C2C12 differentiation…………………………………...56

    Accili, D., and Arden, K.C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421-426.
    Bastie, C.C., Nahle, Z., McLoughlin, T., Esser, K., Zhang, W., Unterman, T., and Abumrad, N.A. (2005). FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. The Journal of biological chemistry 280, 14222-14229.
    Bentzinger, C.F., Romanino, K., Cloetta, D., Lin, S., Mascarenhas, J.B., Oliveri, F., Xia, J., Casanova, E., Costa, C.F., Brink, M., et al. (2008). Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell metabolism 8, 411-424.
    Blagosklonny, M.V., and Hall, M.N. (2009). Growth and aging: a common molecular mechanism. Aging 1, 357-362.
    Blumberg, P.M. (1988). Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer research 48, 1-8.
    Bois, P.R., and Grosveld, G.C. (2003). FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. The EMBO journal 22, 1147-1157.
    Boulbes, D.R., Shaiken, T., and Sarbassov dos, D. (2011). Endoplasmic reticulum is a main localization site of mTORC2. Biochemical and biophysical research communications 413, 46-52.
    Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S., and Schreiber, S.L. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756-758.
    Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J.V., Dalal, S.N., DeCaprio, J.A., Greenberg, M.E., and Yaffe, M.B. (2002). 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. The Journal of cell biology 156, 817-828.
    Brunet, A., Park, J., Tran, H., Hu, L.S., Hemmings, B.A., and Greenberg, M.E. (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Molecular and cellular biology 21, 952-965.
    Facchinetti, V., Ouyang, W., Wei, H., Soto, N., Lazorchak, A., Gould, C., Lowry, C., Newton, A.C., Mao, Y., Miao, R.Q., et al. (2008). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. The EMBO journal 27, 1932-1943.
    Fingar, D.C., and Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-3171.
    Fingar, D.C., Richardson, C.J., Tee, A.R., Cheatham, L., Tsou, C., and Blenis, J. (2004). mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Molecular and cellular biology 24, 200-216.
    Firestone, G.L., Giampaolo, J.R., and O'Keeffe, B.A. (2003). Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 13, 1-12.
    Frias, M.A., Thoreen, C.C., Jaffe, J.D., Schroder, W., Sculley, T., Carr, S.A., and Sabatini, D.M. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Current biology : CB 16, 1865-1870.
    Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishida, E. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308-311.
    Furuyama, T., Yamashita, H., Kitayama, K., Higami, Y., Shimokawa, I., and Mori, N. (2002). Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microscopy research and technique 59, 331-334.
    Gao, D., Wan, L., Inuzuka, H., Berg, A.H., Tseng, A., Zhai, B., Shaik, S., Bennett, E., Tron, A.E., Gasser, J.A., et al. (2010). Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Molecular cell 39, 797-808.
    Garcia-Martinez, J.M., and Alessi, D.R. (2008). mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). The Biochemical journal 416, 375-385.
    Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Developmental cell 11, 859-871.
    Gulhati, P., Bowen, K.A., Liu, J., Stevens, P.D., Rychahou, P.G., Chen, M., Lee, E.Y., Weiss, H.L., O'Connor, K.L., Gao, T., et al. (2011). mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer research 71, 3246-3256.
    Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189.
    Hernandez-Negrete, I., Carretero-Ortega, J., Rosenfeldt, H., Hernandez-Garcia, R., Calderon-Salinas, J.V., Reyes-Cruz, G., Gutkind, J.S., and Vazquez-Prado, J. (2007). P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. The Journal of biological chemistry 282, 23708-23715.
    Houde, V.P., Brule, S., Festuccia, W.T., Blanchard, P.G., Bellmann, K., Deshaies, Y., and Marette, A. (2010). Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 1338-1348.
    Hribal, M.L., Nakae, J., Kitamura, T., Shutter, J.R., and Accili, D. (2003). Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. The Journal of cell biology 162, 535-541.
    Huang, H., and Tindall, D.J. (2007). Dynamic FoxO transcription factors. Journal of cell science 120, 2479-2487.
    Ikenoue, T., Inoki, K., Yang, Q., Zhou, X., and Guan, K.L. (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. The EMBO journal 27, 1919-1931.
    Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590.
    Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S.Y., Huang, Q., Qin, J., and Su, B. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125-137.
    Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M.A., Hall, A., and Hall, M.N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature cell biology 6, 1122-1128.
    Jones, K.T., Greer, E.R., Pearce, D., and Ashrafi, K. (2009). Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS biology 7, e60.
    Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., Mochida, K., Hata, T., Matsuda, J., Aburatani, H., et al. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. The Journal of biological chemistry 279, 41114-41123.
    Keith, C.T., and Schreiber, S.L. (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270, 50-51.
    Kumar, A., Harris, T.E., Keller, S.R., Choi, K.M., Magnuson, M.A., and Lawrence, J.C., Jr. (2008). Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Molecular and cellular biology 28, 61-70.
    Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., and Vallon, V. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological reviews 86, 1151-1178.
    Lehman, W., Galinska-Rakoczy, A., Hatch, V., Tobacman, L.S., and Craig, R. (2009). Structural basis for the activation of muscle contraction by troponin and tropomyosin. Journal of molecular biology 388, 673-681.
    Loffing, J., Flores, S.Y., and Staub, O. (2006). Sgk kinases and their role in epithelial transport. Annual review of physiology 68, 461-490.
    Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K., and Avruch, J. (2005). Rheb binds and regulates the mTOR kinase. Current biology : CB 15, 702-713.
    Ma, X.M., and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nature reviews Molecular cell biology 10, 307-318.
    Maiyar, A.C., Leong, M.L., and Firestone, G.L. (2003). Importin-alpha mediates the regulated nuclear targeting of serum- and glucocorticoid-inducible protein kinase (Sgk) by recognition of a nuclear localization signal in the kinase central domain. Molecular biology of the cell 14, 1221-1239.
    Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.
    Martiny-Baron, G., and Fabbro, D. (2007). Classical PKC isoforms in cancer. Pharmacological research : the official journal of the Italian Pharmacological Society 55, 477-486.
    Masri, J., Bernath, A., Martin, J., Jo, O.D., Vartanian, R., Funk, A., and Gera, J. (2007). mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer research 67, 11712-11720.
    Mattaj, I.W., and Englmeier, L. (1998). Nucleocytoplasmic transport: the soluble phase. Annual review of biochemistry 67, 265-306.
    Oh, W.J., Wu, C.C., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B., and Jacinto, E. (2010). mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. The EMBO journal 29, 3939-3951.
    Peterson, T.R., Laplante, M., Thoreen, C.C., Sancak, Y., Kang, S.A., Kuehl, W.M., Gray, N.S., and Sabatini, D.M. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886.
    Polak, P., and Hall, M.N. (2009). mTOR and the control of whole body metabolism. Current opinion in cell biology 21, 209-218.
    Risson, V., Mazelin, L., Roceri, M., Sanchez, H., Moncollin, V., Corneloup, C., Richard-Bulteau, H., Vignaud, A., Baas, D., Defour, A., et al. (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. The Journal of cell biology 187, 859-874.
    Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., and Goldberg, A.L. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399-412.
    Sarbassov, D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current biology : CB 14, 1296-1302.
    Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.H., Hsu, P.P., Bagley, A.F., Markhard, A.L., and Sabatini, D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Molecular cell 22, 159-168.
    Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101.
    Seoane, J., Le, H.V., Shen, L., Anderson, S.A., and Massague, J. (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211-223.
    Shiota, C., Woo, J.T., Lindner, J., Shelton, K.D., and Magnuson, M.A. (2006). Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Developmental cell 11, 583-589.
    Shu, L., and Houghton, P.J. (2009). The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Molecular and cellular biology 29, 4691-4700.
    Soukas, A.A., Kane, E.A., Carr, C.E., Melo, J.A., and Ruvkun, G. (2009). Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes & development 23, 496-511.
    Stitt, T.N., Drujan, D., Clarke, B.A., Panaro, F., Timofeyva, Y., Kline, W.O., Gonzalez, M., Yancopoulos, G.D., and Glass, D.J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular cell 14, 395-403.
    Stochaj, U., Rassadi, R., and Chiu, J. (2000). Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 14, 2130-2132.
    Tessier, M., and Woodgett, J.R. (2006). Serum and glucocorticoid-regulated protein kinases: variations on a theme. Journal of cellular biochemistry 98, 1391-1407.
    Van Der Heide, L.P., Hoekman, M.F., and Smidt, M.P. (2004). The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. The Biochemical journal 380, 297-309.
    van der Heide, L.P., Jacobs, F.M., Burbach, J.P., Hoekman, M.F., and Smidt, M.P. (2005). FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. The Biochemical journal 391, 623-629.
    Vander Haar, E., Lee, S.I., Bandhakavi, S., Griffin, T.J., and Kim, D.H. (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature cell biology 9, 316-323.
    Zhang, F., Zhang, X., Li, M., Chen, P., Zhang, B., Guo, H., Cao, W., Wei, X., Cao, X., Hao, X., et al. (2010). mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer research 70, 9360-9370

    QR CODE