簡易檢索 / 詳目顯示

研究生: 李沂澂
Li, Yi- Cheng
論文名稱: 應用分類與迴歸樹探討高中職生金融知識結構
Applying Classification and Regression Trees to Investigate High School Students' Financial Knowledge Structures
指導教授: 林正昌
學位類別: 碩士
Master
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 分類與迴歸樹金融素養概念結構
英文關鍵詞: Classification and Regression Trees (CART), Financial Literacy, Conceptual Structures
DOI URL: https://doi.org/10.6345/NTNU202204092
論文種類: 學術論文
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在透過分類與迴歸樹(CART)分析方法,探討臺灣高中職生在金融素養認知測驗的表現情形及其不同表現的知識結構差異。研究者以林正昌(2016)創新金融教育課程之設計中,針對全國各區高中職學生以相同金融素養認知測驗版本施測的結果為資料來源,有效樣本數為993人。研究過程將測驗得分透過CART建立分類預測模型,找出預測不同表現的金融概念,概念間積差相關係數大小,建構出高分群與低分群的金融知識結構圖。本研究有以下四點發現:一、高中職生的金融知識表現呈現常態分配。二、高中職生的金融素養認知測驗表現分類模型之分類正確率整體高達88.1%、高分群達89.3%、低分群達86.9%。三、預測高分表現的的試題為「風險評估mu2」、「金融政策mu8」、「金融機構F19」與「國際貿易mu1」;預測低分表現的試題為「風險評估F29」、「金融政策F20」、「金融政策mu5」與「貨幣F23」。兩群的共同預測試題為:「風險評估F14」、「金融政策F26」與「通貨膨脹mu6」,可視為基本試題。四、預測高分表現的五個金融概念間呈現正相關,分別為「風險評估」、「金融政策」、「通貨膨脹」、「國際貿易」與「金融機構」。其中,以「風險評估與金融政策」相關程度最高;「通貨膨脹與金融機構」相關程度最低。預測低分表現的四個金融概念間呈現正相關,分別為「風險評估」、「金融政策」、「通貨膨脹」與「貨幣」。其中,以「風險評估與金融政策」的相關程度最高;「通貨膨脹與貨幣」的相關程度最低。本研究可瞭解高低分群的金融知識結構差異,並作為金融課程、測驗或教材篩選重點金融概念的參考,建議未來研究可採用其他測驗版本進行分析。

    Through Classification and Regression Trees (CART), this study aims at investigating the performance of Taiwanese high school students on the financial literacy cognitive assessment, based on which the differences among their financial knowledge structures are further discussed. This study targeted at one of the six versions of the financial cognitive assessment under the Design of Innovative Financial Education Curriculum conducted by Cheng-Chang Lin (2016) collecting the assessment results as data to be analyzed for this study, and 993 samples collected were effective. Based on the data collected, a classification model was formed up through CART, through which various financial concepts of high and low scoring groups respectively were thus defined. Correlation coefficients between each financial concept were further identified through product-moment correlation analysis, based on which a financial knowledge chart was finally made. The four main findings are as follows: 1. The financial knowledge performance of Taiwanese high school students is normally distributed. 2. The average accuracy rate of the classification model was 88.1%, with 89.3% for the high scoring group and 86.9% for the low scoring group. 3. Test items that can predict high scoring are “risk assessment F14”, “financial policy F26” and “inflation mu6”, “risk assessment mu2”, “financial policy mu8”, “financial institution F19”and “international trade mu1”. Test items that can predict low scoring are “risk assessment F14”, “financial policy F26” and “inflation mu6”, “risk assessment F29”, “financial policy F20”, “financial policy mu5” and “currency F23”. As “risk assessment F14”, “financial policy F26” and “inflation mu6” are items that can predict both high and low scoring, they can be regarded as basic test items for financial cognitive assessment. 4. The five financial concepts predicting high scoring are significant positive correlated, including “risk assessment”, “financial policy”, “inflation”, “international trade” and “financial institution”, among which the correlation between “risk assessment” and “financial policy” is the highest, and that between “inflation” and “financial institution” is the lowest. The four financial concepts predicting low scoring are significant positive correlated, including “risk assessment”, “financial policy”, “inflation” and “currency”, among which the correlation between “risk assessment” are “financial policy” is the highest, and that between “inflation” and “currency” is the lowest. This study makes understanding of the differences of financial knowledge structures between high and low scoring groups, hoping to provide suggestions for educators on choosing which concepts to include in financial courses, tests or teaching materials. It is also suggested that the other five versions of the financial cognitive assessment can be targeted for future studies.

    誌謝詞 i 中文摘要 iii 英文摘要 v 目次 vii 表次 ix 圖次 xi 第一章 緒論 1 第一節 動機與目的 1 第二節 重要名詞釋義 7 第二章 文獻探討 9 第一節 國內外金融教育課程與測驗執行結果之概況 9 第二節 知識結構理論與應用研究 32 第三節 探討知識結構的方法 44 第三章 方法 53 第一節 次級資料分析法 53 第二節 資料來源 55 第三節 變項界定 58 第四節 資料分析 61 第四章 結果與討論 63 第一節 高中職生在金融素養認知測驗的表現情形 63 第二節 高中職生在金融素養認知測驗表現的分類預測模型 65 第三節 高中職生不同金融素養認知測驗表現的預測變項試題項目 83 第四節 高中職生不同金融素養認知測驗表現的金融知識結構 86 第五章 結論與建議 95 第一節 結論 95 第二節 建議 98 參考文獻 101 中文部分 101 英文部分 107 附錄 111 附錄一 高中教科書與高中職金融素養認知測驗金融概念次數分布表 111

    中華民國財金智慧教育推廣協會(2008a)。個人理財高中篇(學生手冊)。取自FINLEA財金智慧教育推廣協會網站:http://www.finlea.org.tw/upload/download/%7BFD6D32F2-6135-43DE-B854-17D8DBF2DBD0%7D_%AD%D3%A4H%B2z%B0%5D-%B0%AA%A4%A4%BDg%28%BE%C7%A5%CD%A4%E2%A5U%29.pdf,2016年7月22日。
    中華民國財金智慧教育推廣協會(2008b)。個人理財高中篇(教師手冊)。取自FINLEA財金智慧教育推廣協會網站:http://www.finlea.org.tw/upload/download/%7BFD6D32F2-6135-43DE-B854-17D8DBF2DBD0%7D_%AD%D3%A4H%B2z%B0%5D-%B0%AA%A4%A4%BDg%28%BE%C7%A5%CD%A4%E2%A5U%29.pdf,2016年7月22日。
    王開府(2008)。心智圖與概念模組在語文閱讀與寫作思考教學之運用。國文學報,43,263-296。
    江羿臻(2009)。利用分類與迴歸樹探討中學生學習成就的相關因素(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    江羿臻、林正昌(2014)。應用決策樹探討中學生學習成就的相關因素。教育心理學報,45(3),303-327。doi:10.6251/BEP.20130528
    江淑卿(2001)。概念構圖與圖示對兒童自然科學的知識結構、理解能力與學習反應之影響。科學教育學刊,9(1),35-54。
    行政院(2015,6月)。教育部令(臺教授國部字第1050060672B號),行政院公報,22(100)。取自行政員公報資訊網站:http://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg022100/ch05/type2/gov40/num10/Eg.htm,2016年7月22日。
    余民寧(1997)。有意義的學習:概念構圖之研究。臺北:商鼎。
    宋德忠、林世華、陳淑芬、張國恩(1998)。知識結構的測量:徑路搜尋法與概念構圖法的比較。教育心理學報,30(2),123-142。doi:10.6251/BEP.19980927.2
    李酉潭(總編)(2015a)。普通高級中學公民與社會4備課用書(A冊)。臺南:翰林。
    李酉潭(總編)(2015b)。普通高級中學公民與社會4備課用書(B冊)。臺南:翰林。
    李酉潭(總編)(2015c)。普通高級中學公民與社會4備課用書(C冊)。臺南:翰林。
    李酉潭(總編)(2015d)。普通高級中學選修公民與社會(下)備課用書(B冊)。臺南:翰林。
    李酉潭(總編)(2015e)。普通高級中學選修公民與社會(下)備課用書(C冊)。臺南:翰林。
    周繼祥、陳正昌(2015)。普通高級中學選修公民與社會下冊。臺北:康熹文化。
    林正昌(2016)。創新金融教育課程之設計。課程研究,11(1),1-22。
    林正昌、毛國楠、趙雅鈴(2013)。單一整合型計畫──高中職「金融領域探究式課程」研發計畫(III)。行政院國家科學委員會專題研究成果報告(編號:NSC102-2514-S003-001)
    林有土(總編)(2015a)。普通高級中學公民與社會4教師手冊(A冊)。臺北:龍騰文化。
    林有土(總編)(2015b)。普通高級中學公民與社會4教師手冊(B冊)。臺北:龍騰文化。
    林有土(總編)(2015c)。普通高級中學選修公民與社會(下)教師手冊(B冊)。臺北:龍騰文化。
    林祖嘉、吳文傑(2016)。普通高級中學公民與社會第四冊。臺北:三民。
    孫易新(譯)(2007)。Bazun, T., & Bazun, B.著。心智圖聖經:心智圖法理論與實務篇(The mind map book)。臺北:耶魯。
    孫惠民(2007)。資料採掘理論與實務規劃手冊。臺北:文魁資訊。
    張子超、楊冠政(1997)。學生環境知識概念結構發展的研究。師大學報:科學教育類,42,31-48。doi:10.6300/JNTNU.1997.42.03
    張云濤、龔玲(2012)。資料探勘原理與技術。臺北:五南。
    張春興(2006)。張氏心理學辭典(重訂版)。臺北:東華。
    張春興(2007)。教育心理學──三化取向的理論與實踐(重修二版)。臺北:東華。
    張清溪、鄧毓浩(主編)(2013a)。普通高級中學選修公民與社會第4冊教師手冊(Ⅰ)。臺南:南一。
    張清溪、鄧毓浩(主編)(2013b)。普通高級中學選修公民與社會第4冊教師手冊(Ⅱ)。臺南:南一。
    張清溪、鄧毓浩(主編)(2013c)。普通高級中學選修公民與社會第4冊教師手冊(Ⅲ)。臺南:南一。
    教育部(2008a)。普通高級中學必修科目「公民與社會」課程綱要。取自國家教育研究院網站:http://www.naer.edu.tw/ezfiles/0/1000/attach/69/pta_1487_9268955_15401.pdf,2016年7月22日。
    教育部(2008b)。普通高級中學必修科目「家政」課程綱要。取自國家教育研究院網站:http://www.naer.edu.tw/ezfiles/0/1000/attach/69/pta_1499_4449135_15560.pdf,2016年7月22日。
    教育部(2010)。普通高級中學課程綱要總綱。取自教育部國民及學前教育署網站:http://www.k12ea.gov.tw/files/common_unit/a7285432-45bf-4371-b514-3eb12aff9871/doc/%E9%AB%98%E4%B8%AD%E8%AA%B2%E7%A8%8B%E7%B8%BD%E7%B6%B1.pdf,2016年7月22日。
    教育部(2014)。十二年國民基本教育課程綱要總綱。取自國家教育研究院網站:http://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf,2016年7月22日。
    梁德馨、葉建良(2008)。消費者信用貸款違約風險評估模型之研究—以CART分類與迴歸樹建模。中山管理評論,16(3),465-506。
    許麗齡、章美英、謝素英(2008)。心智圖──一種促進學生學習策略的新工具。護理雜誌,55(2),76-80。doi:10.6224/JN.55.2.76
    陳正倉、林惠玲(主編)(2015a)。普通高級中學公民與社會4教師用書(A冊)。臺北:康熹文化。
    陳正倉、林惠玲(主編)(2015b)。普通高級中學公民與社會4教師用書(B冊)。臺北:康熹文化。
    陳湘淳、李玉琇(2005)。記憶策略訓練對工作記憶容量的影響。教育心理學報,37(1),41-59。doi:10.6251/BEP.20050813
    陳錦輝(2012)。資料結構初學指引:入門精要版。新北:博碩文化。
    傅振華、林忠毅(2014)。提昇E世代通識教育資訊素養之探究。實踐博雅學報,21,29-51。
    曾憲雄、蔡秀滿、蘇東興、曾秋榮、王慶堯(2015)。資料探勘 Data Mining。臺北市:旗標。
    游森期、余民寧(2006)。知識結構診斷評量與S-P表之關聯性研究。教育與心理研究,29(1),183-208。
    黃丹鈺(2003)。國中公民與道德科經濟學教科書之內容分析。公民訓育學報,14,143-181。doi:10.6231/CME.2003(14)08
    黃美筠(2008)。理財教育融入中小學課程的必要性──由其重要性與課程內涵析論之。公民訓育學報,19,25-54。doi:10.6231/CME.2008(19)02
    黃逸杉(2013)。應用一日重建法和分類與迴歸樹探討主觀幸福感(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    葉重新(2004)。教育研究法。臺北:心理。
    劉義周、洪福聲(2016)。普通高級中學選修公民與社會下冊。臺北:三民。
    蔡慈清(2003)。利用概念構圖教學策略探討國三學生經濟概念的學習──以「政府的收入」概念為例(未出版碩士論文)。國立臺北教育大學,臺北市。
    鄧毓浩、張清溪(2014a)。普通高級中學選修公民與社會下冊教師手冊(Ⅱ)。臺南:南一。
    鄧毓浩、張清溪(2014b)。普通高級中學選修公民與社會下冊教師手冊(Ⅲ)。臺南:南一。
    蕭郁瑩、黃美筠(2014)。美國與臺灣高中理財教育課程之比較研究。公民教育與活動領導學報,23,103-138。doi:10.6231/CEL.2014(23)03
    賴小琴、劉?瀟(2015)。PISA2012金融素養評價的特點及啟示。廣西教育學院學報,5,188-193。
    戴金花(2010)。我國中小學理財教育的缺失及對策。現代教育科學(普教研究),1,52-53。
    薛琦(2010)。調查國民金融知識水準方法、架構及實地調查之研究。行政院金融監督管理委員會期末報告。doi:10.6141/TW-SRDA- D00089-1
    謝邦昌(2014)。SQL Server資料採礦與商業智慧──適用SQL Server 2014 / 2012。臺北:碁峰資訊。
    謝政達(2015)。104學年度指定科目考試公民與社會考科試題分析。取自大學入學考試中心網站:http://www.ceec.edu.tw/Research2/doc_050519/C%E7%B5%B1104-10.pdf,2016年7月22日。
    簡禎富、許嘉裕(2015)。資料挖礦與大數據分析(第二版)。新北:前程。
    蘇怡文、高振耀(2012)。心像的魔法──心智圖與創造寫作。中華民國特殊教育學會年刊,101,87-102。
    Atkinson, A., Messy, F. A., Rabinovich, L., & Yoong, J. (2015). Financial education for long-term savings and investments: Review of research and literature (Research Report No. 39). Retrieved from OECD website: http://www.oecd-ilibrary.org/finance-and-investment/financial-education-for-long-term-savings-and-investments_5jrtgzfl6g9w-en
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.). The psychology of learning and motivation (Vol. 2, pp. 89–195). New York: Academic.
    Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive view (2nd ed.). New York: Holt, Rinehart & Winston.
    Bellezza, F. S. (1996). Mnemonic methods to enhance storage and retrieval. In E. L. Bjork (Ed.), Memory: Handbook of perception and cognition (2nd ed.). (pp. 345-380). US: Academic Press, Inc.
    Best, J. B. (1999). Cognitive psychology. Minneapolis: West.
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C.J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.
    Burrows, N. L., & Mooring, S. R. (2015). Using concept mapping to uncover students’ knowledge structures of chemical bonding concepts. Chemistry Education Research And Practice, 16(1), 53-66.
    Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407-428. doi:http://dx.doi.org/10.1037/0033-295X.82.6.407
    Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8,240-247.
    Council for Economic Education. (2010). Voluntary national content standards in economics (2nd ed.). Retrieved from http://councilforeconed.org/resource/voluntary-national-content-standards-in-economics/
    Gagn?, R. M. (1985). The conditions of learning (4th ed.). New York: Holt, Rinehart & Winston.
    Gill, A., & Bhattacharya, R. (2015). Integration of a financial literacy curriculum in a high school economics class: Implications of varying the input mix from an experiment. Journal of Consumer Affairs, 49(2), 472-487. doi:10.1111/joca.12048
    Hebb, D.O. (1949).The organization of behavior.New York: Wiley.
    Johnson, P. J., Goldsmith, T. E., & Teague, K. W. (1994). Locus of the predictive advantage in pathfinder-based representations of classroom knowledge. Journal of Educational Psychology, 86(4), 617-626. doi:http://dx.doi.org/10.1037/0022-0663.86.4.617
    Jump$tart Coalition for Personal Financial Literacy. (2015). National standards in k-12 personal finance education (4th ed.). Washington, DC: Jump$tart Coalition.
    Kurt, H., Ekici, G., Aktas, M., & Aksu, ?. (2013). Determining biology student teachers' cognitive structure on the concept of "diffusion" through the free word-association test and the drawing-writing technique. International Education Studies, 6(9), 187-206.
    Mandell, L. (2008). The financial literacy of young American adults: Results of the 2008 national Jump$tart Coalition survey of high school seniors and college students. Washington, DC: Jump$tart Coalition.
    Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227-234. doi:http://dx.doi.org/10.1037/h0031564
    Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, London: Cambridge University.
    Office of Financial Education. (2002). Integrating financial education into school curricula: Giving America's youth the educational foundation for making effective financial decisions throughout their lives by teaching financial concepts as part of math and reading curricula in elementary, middle, and high schools. Washington, DC: U.S. Department of the Treasury.
    Organisation for Economic Co-operation and Development. (2005). Improving Financial Literacy: Analysis of Issues and Policies. Paris, FR: OECD. doi: 10.1787/9789264012578-en
    Organisation for Economic Co-operation and Development. (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris, FR: OECD. doi: 10.1787/9789264190511-en
    Organisation for Economic Co-operation and Development. (2014). PISA 2012 results: Students and money (Volume VI): Financial literacy skills for the 21st century. Paris, FR: OECD. doi: 10.1787/9789264208094-en
    Organisation for Economic Co-operation and Development. (2016a). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. Paris, FR: OECD. doi: 10.1787/9789264255425-en
    Organisation for Economic Co-operation and Development. (2016b). Low-Performing Students: Why They Fall Behind and How To Help Them Succeed. Paris, FR: OECD. doi: http://dx.doi.org/10.1787/9789264250246-en
    Ratcliff, R., & McKoon, G. (1981). Does activation really spread? Psychological Review, 88(5), 454-462. Retrieved from http://search.proquest.com/docview/614276103?accountid=14228
    Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408. doi:http://dx.doi.org/10.1037/h0042519
    Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing. Decision Support Systems, 31(1), 127-137.
    Siguenza-Guzman, L., Saquicela, V., Avila-Ord??ez, E., Vandewalle, J., & Cattrysse, D. (2015). Literature review of data mining applications in academic libraries. Journal of Academic Librarianship, 41(4), 499-510. doi:10.1016/j.acalib.2015.06.007
    Solso, R. L. (1995). Cognitive psychology (4th ed.). Boston: Allyn & Bacon.
    Stewart, D. W., & Kamins, M. A. (1993). Secondary research: Information sources and methods. (2nd ed.). Newbury Park, CA: Sage.

    無法下載圖示 本全文未授權公開
    QR CODE