研究生: |
郭瓊華 |
---|---|
論文名稱: |
臺灣蜓蜥族群遺傳結構之研究 The Population Genetic Structrue of Sphenomorphus taiwanensis |
指導教授: |
呂光洋
Lue, Kuang-Yang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 台灣蜓蜥 、族群遺傳結構 、高海拔生物 、親緣關係生物地理學 |
英文關鍵詞: | Sphenomorphus taiwanensis, population genetic structure, high attitude, phylogeography |
論文種類: | 學術論文 |
相關次數: | 點閱:253 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣蜓蜥(Sphenomorphus taiwanensis),分類上屬於有鱗目(Squamata)、石龍子科(Scincidae)、蜓蜥屬(Sphenomorphus),為台灣特有種生物。分布於海拔2000公尺以上的山區。對於高海拔分布的物種而言,隔離的山頭可視為一個孤絕的島嶼,地理上的隔離效應可反應在族群遺傳結構上。
我們利用了粒線體上的cytochrome b及COX1序列當作分子遺傳標記,共分析9個地區、87隻個體,分別得到了56及48種haplotype類型。族群內兩個個體之間遺傳距離最大值為10.6%(cytochrome b序列)及10.4%(COX1序列),族群間兩個個體之間遺傳距離最大值為16.6%及11.2%,平均族群內遺傳距離介於0.4~9.8%及0~5.7%,族群間遺傳距離為3.2~13.9%及1.6~10.4%。此外,族群分化指數指出大部分族群間基因交流並不順暢,顯示族群分化程度明顯,隔離效應顯著,但並不符合距離隔離的模式。雪山山脈與中央山脈之間因為溪流切割所造成的隔離效應並未影響到台灣蜓蜥的族群遺傳結構。而雪山東峰地區與其他地區族群間基因交流指數值卻偏低,我們認為雪山東峰地區是一個特殊的隔離族群。
若以最儉約法則(Maximum parsimony criterion)及鄰聚法(Neighbor joining method)建構族群親緣關係,並以高的bootstrap值界定系群類型(lineage),則可發現9大系群,但系群類型與族群在地理上的分布並不完全吻合。有些地區僅出現一種系群類型,如雪山東峰、大雪山、合歡山、阿里山、南橫埡口地區。而其中雪山東峰與合歡山地區出現的系群類型僅出現於該地區,為特有的系群類型;而觀霧及太平山地區出現兩種系群類型,但兩系群所佔的比例不同;塔塔加地區出現三種系群類型;南湖地區出現四種系群類型,為多樣性最高的區域。
我們認為台灣蜓蜥的族群遺傳結構可能是受到冰河時期其族群往下移動到低海拔地區,進行基因交流;但當間冰期來臨時,可能因競爭不過低海拔的大型蜓蜥類生物,或是因不能忍受低海拔的溫度,被迫往高海拔地區移動,因此形成各種系群的基因型共同出現於同一地點。
台灣蜓蜥種內變異程度較其他物種大的原因可能是因為多次入侵、避難所效應、或者是輻射演化所造成的,並非單純因為島內地理上的隔離之後,族群再度接觸所形成的結果。
Sphenomorphus taiwanensis is an endemic species of Taiwan. It was distributed above 2000 m attitude. Currently, most phylogeographic studies focused on lower attitude species. To high attitude species,living in high mountains was like living in an isolation island. The geological isolation may influence the population genetic structure of S. taiwanensis. Cytochrome b (Cyt b) and cytochrome oxidase c subunit 1 (COX1) were used as genetic markers to analysis the phylogeography of S. taiwanensis. The partial sequences were determined in 89 individuals. 56 and 48 haplotype were identified. The maximum pairwise genetic distance between individuals within population was 10.6% (Cyt b) and 10.4% (COX1). The maximum pairwise genetic distances between individuals between populations were 16.6% (Cyt b) and 11.2% (COX1). The mean pairwise genetic distance within population were 0.4~9.8% (Cyt b) and 0~5.7% (COX1). The mean pairwise genetic distance between populaitons were 3.2~13.9% (Cyt b) and 1.6~10.4% (COX1). We found that the intraspecies genetic variation of S. taiwanensis was larger than other species. The gene flow index indicated that the gene flows among populations were hindered. It indicated that the differentiation level among populations was high, but was not consistent with isolation by distance model. We found the gene flows between Hsuehshan population and other populations were hindered. We thought Hsuehshan population was an special isolation population.
Phylogenetic trees were constructed by neighbor-joining (NJ) and maximum parsimony (MP) methods using S. incognitus and S. indicus as the outgroups indicated that S. taiwanensis can be separated into nine major lineages with high bootstrap value. Some lineages were allopatric, others were sympatric. The lineages’ distribution was not consistent with the geological distribution of populations. Some populations only had one lineage, included Hsuehshan, Tahsuehshan, Hohuanshan, Alishan, Yakou population. Kuanwu and Taipingshan population had two lineages, Tatachia population had three lineages, and Nanhu population had four lineages. The genetic diversity of Nanhu population was very high.
The reason of that there were high intraspecies genetic variation of S. taiwanensis may be multiple invasion or refuge effect or radiation evolution.
Avise, J. C. 2000. Phylogeography: The history and formation of species. Harvard college Press. Cambridge, Massachusetts London, England.
Barber, P. H. 1999. Patterns of gene flow and population genetic structure in the canyon treefrog, Hyla arenicolor (Cope). Mol. Ecol. 8:563-576.
Brown, R. P., and J. Pestano. 1998. Phylogeography of skinks (Chalcides) in the Canary Islands inferred from mitochondrial DNA sequences. Mol. Ecol. 7: 1183-1191.
Bruna, E. M., R. N. Fisher, and T. J. Case. 1996. Morphological and genetic evolution appear decoupled in Pacific skinks (Squamata: Scincidae: Emoia) Proc. R. Soc. Lond. B. 263: 681-688.
Castella, V., M. Ruedi, L. Excoffier, C. Ibanez, R. Arlettaz, and J. Hausser. 2000. Is the Gibraltar strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Mol. Ecol. 9: 1761-1772.
Chesser, R. T. 2000. Evolution in the high Andes: the phylogenetics of Muscisaxicola ground-tyrants. Mol. Phylogenet. and Evol. 15: 369-380.
Chen, S. H., and K. Y. Lue. 1987. A new species of Skink, Sphenomorphus taiwanensis from Taiwan (Scuria: Scincidae). Bull. Inst. Zool., Academia Sinica 26: 115-121.
Chou, W. H., and J. Y. Lin. 1992. Notes on the reproduction of the skink, Sphenomorphus taiwanensis from Taiwan. J. Taiwan Mus. 45: 1-4.
Creer S., A. Malhotra, R. S. Thorpe, and W. H. Chou. 2001. Multiple causation of phylogeographical pattern as revealed by nested clade analysis of the bamboo viper(Trimeresurus stejnegeri)within Taiwan. Mol. Ecol. 10: 1967-1981
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791
Fu , Y. X. and W. H. Li.1993. Statistical tests of neutrality
of mutations. Genetics 133: 693-704
Graur D. and W. H. Li. 2000.Fundamentals of molecular evolution. Sinauer Associates, Inc. U.S.A.
Honda, M., H. Ota, M. Kobayashi, J. Nabhitabhata, H. S. Yong, and T. Hikida. 2000. Phylogenetic relationships, character evolution, and biogeography of the subfamily Lygosominae (Reptilia: Scincidae) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 15: 452-461.
Hsu, F. H., F. J. Lin, and Y. S. Lin. 2000. Phylogeographic variation in mitochondrial DNA of formosan white-bellied rat Niviventer culturatus. Zoological Studies 39: 38-46.
Hsu, F. H., F. J. Lin, and Y. S. Lin. 2001. Phylogeographic structure of the formosan wood mouse, Apodemus semotus Thomas. Zoological Studies 40: 91-102.
Huang, W. S. 1997. Reproductive cycle of the skink, Sphenomorphus taiwanensis, in central Taiwan. J. Herpetol. 31: 287-290.
Hudson, R. R., Slatkin, M. and Maddison, W. P. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics. 132: 583-589.
Kirchman, J. J., L. A. Whittingham, and F. H. Sheldon. 2000. Relationships among cave swallow populations (Petrochelidon fulva) determined by comparisons of microsatellite and Cytochrome b data. Mol. Phylogenet. Evol. 14: 107-121
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
Kumar, P. S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis, version 1.01. The Pennsylvania State University, PA.
Lin, S. M, C. A. Chen, and K. Y. Lue. 2002. Molecular phylogeny and biogeography of the grass lizards genus Takydromus(Reptile: Lacertidae)of East Asia. Mol. Phylogenet. Evol. 22: 276-288
Lobejoy, N. R., and M. L. De Araujo. 2000. Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol. Ecol. 9: 259-268.
Macey, J. R., J. L. S., J. A. Brisson, V. T. Vredenburg, M. Jennings, and A. Larson. 2001. Molecular phylogenetics of western North American frogs of the Rana boylii species group. Mol. Phylogenet. Evol. 19: 131-143.
Matocq, M. D., J. L. Patton, and M. N. da Silva. 2000. Population genetic structure of two ecologically distinct Amazonian spiny rats: separating history and current ecology. Evolution Int. J. Org. Evolution. 54 : 1423-1432.
Maio, G. P., D. A. G., P. O. Gabriela, and D. B. Wake. 2000. Biodiversity of Costa Rican salamanders: Implications of high level of genetic differentiation and phylogeographic structure for species formation. PNAS 97: 1640-1647.
McGlashan, D. J., and J. M. Hughes. 2000. Reconciling patterns of genetic variation with stream structure, earth history and biology in the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae). Mol. Ecol. 9: 1737-1751.
Muir, C. C., B. M. Galdikas, and A. T. Beckenbach. 2000. mtDNA sequence diversity of orangutans from the islands of Borneo and Sumatra. J. Mol. Evol. 51: 471-480.
Osborne, M. J., J. A. Norman, L. Christidis, and N. D. Murray. 2000. Genetic distinctness of isolated population of an endangered marsupial, the mountain pygmy-possum, Burramys parvus. Mol. Ecol. 9: 609-613.
Rozas, J. and R. Rozas. 1997. DnaSP version 2.0: a novel software package for extensive molecular population genetic s analysis. Comput. Applic. Biosci. 13: 307-331
Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
Small, M. P., and E. M. Gosling. 2000. Species relationships and population structure of Littorina saxatilis Olivi and L. tenebrosa Montagu in Ireland using single-strand conformational polymorphism (SSCPs) of Cytochrome b fragments. Mol. Ecol. 9: 39-52.
Toda, M, M. N., M Matsui, K. Y. Lue, H. Ota. 1998. Genetic variation in the Indian rice frog, Rana limnocharis (Amphibia: Anura) in Taiwan, as revealed by allozyme data. Herpetologica 54: 73-82.
Wang H. Y., M. P. Tsai, M. J. Yu, and S. C. Lee, 1999. Influence of glaciation of divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Mol. Ecol. 8:1879-1888.
Wang, J. P., K. C. Hsu, and T. Y. Chiang, 2000. Mitochondrial DNA phylogeography of Acrossocheilus paradoxus(Cyprinidae)in Taiwan. Mol. Ecol. 9: 1483-1494.
Widmer, A., and P. Schmid-Hempel, 1999. The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol. Ecol. 8:387-398
Yang, Y. J., Y. S. Lin, J. L. Wu, and C. F. Hui. 1994. Variation in mitochondrial DNA and population structure of the Taipei treefrog Rhacophorus taipeianus in Taiwan. Mol. Ecol. 3: 219-228.
Yoshinori, K., and M. Nishida. 1999. Complete mitochondrial DNA sequences of the green turtle and blue-tail mole skink: Statistical evidence for Archosaurian affinity of turtles. Mol. Biol. Evol. 16: 784-792.
王昱人.1997.台灣鉤吻鮭與日本櫻花鉤吻鮭遺傳多樣性之研究。國立清華大學碩士論文,新竹。
方引平.2001.台灣麝鼩屬動物之系統分類及親緣地理學研究(食蟲目:尖鼠科)。國立台灣大學動物學研究所博士論文,台北。
呂光洋.1990.台灣兩棲爬蟲動物。台灣野生動物資源調查手冊(二)。行政院農業委員會,台北。
呂光洋、賴俊祥.1991.台灣區野生動物資料庫(三)蜥蜴類(Ⅰ)。行政院農業委員會,台北。
呂光洋.1997.「台灣生物相形成及演化之探討」計畫簡介。科學發展月刊 25: 723-732。
呂光洋、杜銘章、向高世.1999.台灣兩棲爬行動物圖鑑。大自然出版社,台北。
何孟娟.2000.大琉璃紋鳳蝶與琉璃紋鳳蝶親緣關係之探討。國立台灣師範大學碩士論文,台北。
何瓊紋.2001.粒線體COI基因之歧異顯示了台灣條紋章魚同胞種的存在。國立台灣海洋研究所碩士論文,基隆。
李峻瑋、卓逸民、姜鈴.2001.以粒線體之細胞色素氧化酵素Ⅰ部份序列探討台灣地區人面蜘蛛之族群遺傳結構。私立東海大學生物學系碩士論文,台中。
孫承矩.1997.台灣地區石龍子類生物地理類緣關係之初探。國立台灣師範大學生物學系碩士論文,台北。
高善.1997.台灣地區草蜥類生物地理親緣關係之初探。國立台灣師範大學生物系碩士論文,台北。
高善.2000.台灣地區草蜥類生物地理類緣關係之研究。Biol. Bull. NTNU. 35: 107-123。
陳惠琦.1994.梭德氏蛙的粒線體DNA序列與族群變異之初探。國立台灣大學動物研究所碩士論文,台北。
陳新言.2001.高身白甲魚族群間親緣地理學之研究。國立清華大學碩士論文,新竹。
張學文、劉國強.1997.斯文豪氏攀蜥的生物地理與分子親緣關係。野生動物保育教育與經營管理研討會論文集.行政院農業委員會,台北。
許桂菁、王建平、李信撤、蔣鎮宇.2000.台灣石魚賓 (Acrossocheilus paradoxus)之族群遺傳結構。Biol. Bull. NTNU. 35: 13-23。
葉文珊.1997.莫氏樹蛙族群地理親緣關係之研究。國立台灣大學動物研究所碩士論文,台北。
楊建夫.2000.雪山主峰圈谷群末期冰期的冰河遺跡研究。國立台灣大學地理研究所碩士論文,台北。
鄭雅茵.2000.夸父璀灰蝶族群遺傳結構與璀灰蝶屬親緣關係之研究。國立台灣師範大學生物學系碩士論文,台北。
蔡長益.1999.以粒線體12S核糖體核酸與細胞色素b序列分析守宮族群親緣關係。國立中山大學生命科學系碩士論文,高雄。
廖德裕.2000.台灣產埔里華吸鰍族群間分子親緣關係之研究。國立清華大學生命科學系碩士論文,新竹。
賴俊祥.1996.台灣產山椒魚分類學研究。國立台灣師範大學生物研究所碩士論文,台北。
劉怡里.2000.以RAPD方法分析台灣產樹蛙屬樹蛙之族群遺傳結構。國立台灣大學動物學研究所碩士論文,台北。
繁玉萍.2001.台灣島形成過程對台灣淡水魚族群遺傳結構之研究。國立清華大學碩士論文,新竹。