簡易檢索 / 詳目顯示

研究生: 李亞珊
Lee, Ya-Shan
論文名稱: 銀離子對廣鹽性青鱂魚胚胎離子調節與海水適應能力之影響
Effects of silver ion on ion regulation and seawater adaptation in euryhaline medaka (Oryzias latipes) embryos
指導教授: 林豊益
Lin, Li-Yih
口試委員: 洪君琳
Horng, Jiun-Lin
周銘翊
Chou, Ming-Yi
林豊益
Lin, Li-Yih
口試日期: 2022/01/18
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 銀離子青鱂魚離子細胞離子調節滲透壓調節鹽度挑戰
英文關鍵詞: silver ion, medaka, ionocyte, ionregulation, osmoregulation, salinity challenge
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200322
論文種類: 學術論文
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 vi Abstract vii 研究背景 1 奈米銀的汙染與毒性研究 1 銀離子的毒性研究 2 鹽度對銀離子毒性的影響 3 青鱂魚模式動物 4 魚類的離子細胞(Ionocyte)與滲透壓調節 5 研究目的 7 實驗流程 8 一、比較銀離子在淡水與海水的毒性 8 二、銀離子對青鱂魚胚胎腸道的影響 8 三、銀離子對青鱂魚胚胎的海水適應能力之影響 8 實驗設計 9 實驗1:比較淡水與海水環境中以硝酸銀處理7天後青鱂魚胚胎之累積死亡率與心跳速率。 9 實驗2:比較淡水與海水環境中以硝酸銀處理7天對青鱂魚胚胎形態之影響。 9 實驗3:比較淡水與海水環境中以硝酸銀處理7天後對青鱂魚胚胎卵黃囊上離子細胞密度之影響。 9 實驗4:建立測量胚胎喝水量之方法。 10 實驗5:海水環境中以硝酸銀處理8天後對青鱂魚胚胎的相對喝水量的影響。 10 實驗6:海水環境中以硝酸銀處理7天後對青鱂魚胚胎腸道細胞的凋亡程度。 10 實驗7:海水環境中以硝酸銀處理8天後對青鱂魚胚胎腸道組織與細胞之影響。 11 實驗8:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之累積死亡率與心跳速率。 11 實驗9:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之形態。 11 實驗10:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之卵黃囊上離子細胞的密度與粒線體活性。 12 實驗11:比較以不同濃度硝酸銀處理的青鱂魚胚胎在海水轉移前後之卵黃囊上離子細胞頂膜開口密度與大小。 12 實驗12:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之相對喝水量。 12 實驗13:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之體內鈉離子含量。 13 材料與方法 14 實驗動物 14 硝酸銀溶液配置與實驗處理 14 心跳、體長、卵黃囊大小、眼睛大小、圍心腔大小、體軸彎曲程度與體軸面積的計算 15 免疫細胞螢光染色(Whole-mount immunocytochemistry, ICC) 15 具粒線體活性離子細胞的標定 17 相對喝水量的測量 17 組織包埋與蘇木素–伊紅染色(Hematoxylin and eosin stain, H&E stain) 19 穿透式電子顯微鏡(Transmission electron microscope, TEM) 20 掃描式電子顯微鏡(Scanning electron microscope, SEM) 20 電感耦合電漿體質譜法(Inductively coupled plasma mass spectrometry, ICP-MS) 20 數據統計方法 21 結果 22 實驗1:比較淡水與海水環境中以硝酸銀處理7天後青鱂魚胚胎之累積死亡率與心跳速率。 22 實驗2:比較淡水與海水環境中以硝酸銀處理7天對青鱂魚胚胎形態之影響。 22 實驗3:比較淡水與海水環境中以硝酸銀處理7天後對青鱂魚胚胎卵黃囊上離子細胞密度之影響。 23 實驗4:建立測量胚胎喝水量之方法。 23 實驗5:海水環境中以硝酸銀處理8天後對青鱂魚胚胎的相對喝水量的影響。 24 實驗6:海水環境中以硝酸銀處理7天後對青鱂魚胚胎腸道細胞的凋亡程度。 24 實驗7:海水環境中以硝酸銀處理8天後對青鱂魚胚胎腸道組織與細胞之影響。 25 實驗8:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之累積死亡率與心跳速率。 25 實驗9:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之形態。 26 實驗10:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之卵黃囊上離子細胞的密度與粒線體活性。 26 實驗11:比較以不同濃度硝酸銀處理的青鱂魚胚胎在海水轉移前後之卵黃囊上離子細胞頂膜開口密度與大小。 27 實驗12:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之相對喝水量。 28 實驗13:在淡水中以硝酸銀處理7天並轉移至海水後的青鱂魚胚胎之體內鈉離子含量。 28 討論 29 銀離子在不同鹽度環境對青鱂魚胚胎的毒性差異 29 銀離子在海水環境中造成青鱂魚胚胎的腸道損傷 30 銀離子降低青鱂魚胚胎的海水適應能力 31 葡聚醣(Dextran)在動物實驗之應用 33 青鱂魚胚胎的喝水行為 34 魚類海水適應能力在環境毒理研究中的重要性 35 結論 37 參考文獻 38

    Ando, M., Mukuda, T., Kozaka, T., 2003. Water metabolism in the eel acclimated to sea water: from mouth to intestine. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136, 621-633.
    Asharani, P., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S., 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279-290.
    Asharani, P., Wu, Y.L., Gong, Z., Valiyaveettil, S., 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 255102.
    Bermejo-Nogales, A., Fernández, M., Fernández-Cruz, M., Navas, J., 2016. Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 190, 54-65.
    Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K., 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Science of The Total Environment 390, 396-409.
    Bourque, C.W., 2008. Central mechanisms of osmosensation and systemic osmoregulation. Nature Reviews Neuroscience 9, 519-531.
    Bury, N.R., Wood, C.M., 1999. Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 277, R1385-R1391.
    Cambier, S., Røgeberg, M., Georgantzopoulou, A., Serchi, T., Karlsson, C., Verhaegen, S., Iversen, T.-G., Guignard, C., Kruszewski, M., Hoffmann, L., 2018. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Science of the Total Environment 610, 972-982.
    Chazotte, B., 2011. Labeling mitochondria with MitoTracker dyes. Cold Spring Harbor Protocols 2011, pdb. prot5648.
    Cho, J.-G., Kim, K.-T., Ryu, T.-K., Lee, J.-w., Kim, J.-E., Kim, J., Lee, B.-C., Jo, E.-H., Yoon, J., Eom, I.-c., 2013. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. BioMed Research International 2013.
    Chowdhury, R., Chowdhury, S., Roychoudhury, P., Mandal, C., Chaudhuri, K., 2009. Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis 14, 108-123.
    Ferguson, E.A., Hogstrand, C., 1998. Acute silver toxicity to seawater‐acclimated rainbow trout: Influence of salinity on toxicity and silver speciation. Environmental Toxicology and Chemistry: An International Journal 17, 589-593.
    Fridman, S., Bron, J., Rana, K., 2012. Ontogenic changes in the osmoregulatory capacity of the Nile tilapia Oreochromis niloticus and implications for aquaculture. Aquaculture 356, 243-249.
    Fu, C.-W., Horng, J.-L., Tong, S.-K., Cherng, B.-W., Liao, B.-K., Lin, L.-Y., Chou, M.-Y., 2021. Exposure to silver impairs learning and social behaviors in adult zebrafish. Journal of Hazardous Materials 403, 124031.
    González-Doncel, M., de la Peña, E., Barrueco, C., Hinton, D.E., 2003. Stage sensitivity of medaka (Oryzias latipes) eggs and embryos to permethrin. Aquatic Toxicology 62, 255-268.
    Grosell, M., 2011. Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the oceanic inorganic carbon cycle. Acta Physiologica 202, 421-434.
    Grosell, M., De Boeck, G., Johannsson, O., Wood, C., 1999. The effects of silver on intestinal ion and acid-base regulation in the marine teleost fish, Parophrys vetulus. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 124, 259-270.
    Grosell, M., Wood, C., 2001. Branchial versus intestinal silver toxicity and uptake in the marine teleost Parophrys vetulus. Journal of Comparative Physiology B 171, 585-594.
    Hedayati, S.A., Farsani, H.G., Naserabad, S.S., Hoseinifar, S.H., Van Doan, H., 2019. Protective effect of dietary vitamin E on immunological and biochemical induction through silver nanoparticles (AgNPs) inclusion in diet and silver salt (AgNO3) exposure on Zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 222, 100-107.
    Hirano, T., 1974. Some factors regulating water intake by the eel, Anguilla japonica. Journal of Experimental Biology 61, 737-747.
    Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136, 593-620.
    Hoffmann, A., Bredno, J., Wendland, M., Derugin, N., Ohara, P., Wintermark, M., 2011. High and low molecular weight fluorescein isothiocyanate (FITC)–dextrans to assess blood-brain barrier disruption: technical considerations. Translational Stroke Research 2, 106-111.
    Hogstrand, C., Wood, C.M., 1998. Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environmental Toxicology and Chemistry: An International Journal 17, 547-561.
    Hoppe, B., Pietsch, S., Franke, M., Engel, S., Groth, M., Platzer, M., Englert, C., 2015. MiR-21 is required for efficient kidney regeneration in fish. BMC Developmental Biology 15, 1-10.
    Hsu, H.-H., Lin, L.-Y., Tseng, Y.-C., Horng, J.-L., Hwang, P.-P., 2014. A new model for fish ion regulation: identification of ionocytes in freshwater-and seawater-acclimated medaka (Oryzias latipes). Cell and Tissue Research 357, 225-243.
    Hussain, S., Hess, K., Gearhart, J., Geiss, K., Schlager, J., 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro 19, 975-983.
    Hwang, P.-P., Lee, T.-H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 148, 479-497.
    Kaneko, T., Hasegawa, S., 1999. Application of laser scanning microscopy to morphological observations on drinking in freshwater medaka larvae and those exposed to 80% seawater. Fisheries Science 65, 492-493.
    Kashiwada, S., Tatsuta, H., Kameshiro, M., Sugaya, Y., Sabo‐Attwood, T., Chandler, G.T., Ferguson, P.L., Goka, K., 2008. Stage‐dependent differences in effects of carbaryl on population growth rate in Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry: An International Journal 27, 2397-2402.
    Kataoka, C., Ariyoshi, T., Kawaguchi, H., Nagasaka, S., Kashiwada, S., 2015. Salinity increases the toxicity of silver nanocolloids to Japanese medaka embryos. Environmental Science: Nano 2, 94-103.
    Kataoka, C., Kashiwada, S., 2016. Salinity-dependent toxicity assay of silver nanocolloids using medaka eggs. Journal of Visualized Experiments: JoVE.
    Kataoka, C., Kato, Y., Ariyoshi, T., Takasu, M., Narazaki, T., Nagasaka, S., Tatsuta, H., Kashiwada, S., 2018. Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to Japanese medaka embryos, and later effects on population growth rate. Environmental Pollution 233, 1155-1163.
    Kim, J., Kim, S., Lee, S., 2011. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5, 208-214.
    Kurwadkar, S., Pugh, K., Gupta, A., Ingole, S., 2015. Nanoparticles in the environment: occurrence, distribution, and risks. Journal of Hazardous, Toxic, and Radioactive Waste 19, 04014039.
    Lee, C.-Y., Horng, J.-L., Chen, P.-Y., Lin, L.-Y., 2019. Silver nanoparticle exposure impairs ion regulation in zebrafish embryos. Aquatic Toxicology 214, 105263.
    Lee, J.-H., Won, Y.-S., Park, K.-H., Lee, M.-K., Tachibana, H., Yamada, K., Seo, K.-I., 2012. Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling. Apoptosis 17, 1275-1286.
    Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J., Xu, X.-H.N., 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1, 133-143.
    Liu, J., Hurt, R.H., 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental Science & Technology 44, 2169-2175.
    Madsen, S.S., Bujak, J., Tipsmark, C.K., 2014. Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? Journal of Experimental Biology 217, 3108-3121.
    Massarsky, A., Dupuis, L., Taylor, J., Eisa-Beygi, S., Strek, L., Trudeau, V.L., Moon, T.W., 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92, 59-66.
    Morgan, I.J., Henry, R.P., Wood, C.M., 1997. The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl−1 transport. Aquatic Toxicology 38, 145-163.
    Morgan, T.P., Grosell, M., Gilmour, K.M., Playle, R.C., Wood, C.M., 2004. Time course analysis of the mechanism by which silver inhibits active Na+ and Cl− uptake in gills of rainbow trout. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, R234-R242.
    Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman, M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346.
    Natarajan, R., Northrop, N., Yamamoto, B., 2017. Fluorescein isothiocyanate (FITC)‐dextran extravasation as a measure of blood‐brain barrier permeability. Current Protocols in Neuroscience 79, 9.58. 51-59.58. 15.
    Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra, R., 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science & Technology 42, 8959-8964.
    Nobata, S., Ando, M., Takei, Y., 2013. Hormonal control of drinking behavior in teleost fishes; insights from studies using eels. General and Comparative Endocrinology 192, 214-221.
    Nobata, S., Takei, Y., 2011. The area postrema in hindbrain is a central player for regulation of drinking behavior in Japanese eels. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 300, R1569-R1577.
    Osborne, O.J., Lin, S., Chang, C.H., Ji, Z., Yu, X., Wang, X., Lin, S., Xia, T., Nel, A.E., 2015. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9, 9573-9584.
    Oxendine, S.L., Cowden, J., Hinton, D.E., Padilla, S., 2006. Vulnerable windows for developmental ethanol toxicity in the Japanese medaka fish (Oryzias latipes). Aquatic Toxicology 80, 396-404.
    Powers, C.M., Slotkin, T.A., Seidler, F.J., Badireddy, A.R., Padilla, S., 2011. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicology and Teratology 33, 708-714.
    Sakamoto, T., Kozaka, T., Takahashi, A., Kawauchi, H., Ando, M., 2001. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193, 347-354.
    Saunders, N.R., Dziegielewska, K.M., Møllgård, K., Habgood, M.D., 2015. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Frontiers in Neuroscience 9, 385.
    Shen, W.-P., Horng, J.-L., Lin, L.-Y., 2011. Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 300, R858-R868.
    Smith, H.W., 1930. The absorption and excretion of water and salts by marine teleosts. American Journal of Physiology-Legacy Content 93, 480-505.
    Solis, C.J., Hamilton, M.K., Caruffo, M., Garcia-Lopez, J.P., Navarrete, P., Guillemin, K., Feijoo, C.G., 2020. Intestinal inflammation induced by soybean meal ingestion increases intestinal permeability and neutrophil turnover independently of microbiota in zebrafish. Frontiers in Immunology 11, 1330.
    Stevenson, L.M., Dickson, H., Klanjscek, T., Keller, A.A., McCauley, E., Nisbet, R.M., 2013. Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds. PloS One 8, e74456.
    Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A.B.H., Salim, M.R., Zaini, M.A.A., 2018. Silver nanoparticles in the water environment in Malaysia: inspection, characterization, removal, modeling, and future perspective. Scientific Reports 8, 1-15.
    Temizel-Sekeryan, S., Hicks, A.L., 2020. Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resources, Conservation and Recycling 156, 104676.
    Thorball, N., 1981. FITC-dextran tracers in microcirculatory and permeability studies using combined fluorescence stereo microscopy, fluorescence light microscopy and electron microscopy. Histochemistry 71, 209-233.
    Tipsmark, C.K., Nielsen, A.M., Bossus, M.C., Ellis, L.V., Baun, C., Andersen, T.L., Dreier, J., Brewer, J.R., Madsen, S.S., 2020. Drinking and water handling in the medaka intestine: a possible role of claudin-15 in paracellular absorption? International Journal of Molecular Sciences 21, 1853.
    Tytler, P., Blaxter, J., 1988. The effects of external salinity on the drinking rates of the larvae of herring, plaice and cod. Journal of Experimental Biology 138, 1-15.
    Van Wettere, A.J., Law, J.M., Hinton, D.E., Kullman, S.W., 2013. Anchoring hepatic gene expression with development of fibrosis and neoplasia in a toxicant-induced fish model of liver injury. Toxicologic Pathology 41, 744-760.
    Wang, E., Sandoval, R.M., Campos, S.B., Molitoris, B.A., 2010. Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat. American Journal of Physiology-Renal Physiology 299, F1048-F1055.
    Wang, J., Wang, W.x., 2014. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environmental Toxicology and Chemistry 33, 632-640.
    Webb, N., Shaw, J., Morgan, J., Hogstrand, C., Wood, C., 2001. Acute and chronic physiological effects of silver exposure in three marine teleosts. Aquatic Toxicology 54, 161-178.
    Webb, N.A., Wood, C.M., 1998. Physiological analysis of the stress response associated with acute silver nitrate exposure in freshwater rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry: An International Journal 17, 579-588.
    Whittamore, J.M., 2012. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. Journal of Comparative Physiology B 182, 1-39.
    Wood, C.M., Hogstrand, C., Galvez, F., Munger, R., 1996. The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquatic Toxicology 35, 93-109.
    Wood, C.M., McDonald, M.D., Walker, P., Grosell, M., Barimo, J.F., Playle, R.C., Walsh, P.J., 2004. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquatic Toxicology 70, 137-157.
    Wu, Y., Zhou, Q., 2012. Dose-and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): underlying mechanisms for silver nanoparticle developmental toxicity. Aquatic Toxicology 124, 238-246.
    Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., Jiang, G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology 100, 160-167.
    Yan, J.-J., Hwang, P.-P., 2019. Novel discoveries in acid-base regulation and osmoregulation: a review of selected hormonal actions in zebrafish and medaka. General and Comparative Endocrinology 277, 20-29.
    Yang, X., Gondikas, A.P., Marinakos, S.M., Auffan, M., Liu, J., Hsu-Kim, H., Meyer, J.N., 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environmental Science & Technology 46, 1119-1127.
    Zhao, G., Wang, Z., Xu, L., Xia, C.-X., Liu, J.-X., 2019. Silver nanoparticles induce abnormal touch responses by damaging neural circuits in zebrafish embryos. Chemosphere 229, 169-180.

    無法下載圖示 電子全文延後公開
    2027/02/08
    QR CODE