研究生: |
黃佳杏 Jia-Hsing Huang |
---|---|
論文名稱: |
從突現過程本體面向探討生物恆定性概念改變-以七年級學生為例 An exploration of the 7th grade students' conceptual change of homeostasis from ontological emergent perspective |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 生物恆定性 、概念改變 、本體論 |
英文關鍵詞: | conceptual change, ontology, homeostasis |
論文種類: | 學術論文 |
相關次數: | 點閱:235 下載:42 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
生物恆定性的概念,在生物學當中是屬於重要且不容易學習的單元,學生必須要統合許多生理知識,並且要能掌握其抽象及複雜的動態整體觀,才得以架構出完整的恆定性概念。關於概念學習,Slotta 和Chi(2006)以本體論的觀點分析認為,若是先接受本體分類屬性的訓練,將有助於接下來學習具有此類本體屬性的概念。目前尚未有從概念本體面向來探討生物恆定性的概念改變,因此本研究設計含有突現本體屬性的多媒體教材,希望藉此提升學生學習恆定性概念的整體成效。
本研究欲探討的研究問題為:一、運用含有突現本體屬性的教學媒體對於生物恆定性概念的學習是否有幫助? 二、經過教學後,是否有助於學生概念本體的跨越? 三、成就測驗與概念本體得分是否有關?本研究選擇人體體溫恆定、水分恆定以及血糖恆定三個教學單元,以五班七年級學生共172人為研究參與對象,隨機分派為實驗A組、實驗B組以及對照組(C組)。這三組的學生將依不同的恆定單元採用不同的多媒體教學:
1.實驗A組的學生依次實施的是強調突現的體溫恆定教學、強調突現的水分恆定教學,最後則是未強調突現的血糖恆定教學。
2.實驗B組的學生依次實施的是強調突現的體溫恆定教學、未強調突現的水分恆定教學,最後則是未強調突現的血糖恆定教學。
3.對照組的學生依次實施的是未強調突現的體溫恆定教學、未強調突現的水分恆定教學,最後也是未強調突現的血糖恆定教學。
本研究的結果發現:一、就概念整體表現而言,利用含有突現本體屬性的多媒體教材的實驗組,學習成就表現顯著優於對照組。二、就概念本體得分而言,兩組實驗組優於對照組,而在本體跨越的維持情形也較佳。三、成就測驗與本體屬性得分之間呈顯著正相關。
綜上所述,使用含有突現本體屬性的多媒體教學策略,有助於生物恆定性概念的學習以及突現概念本體屬性的建立,而且在本體屬性跨越的維持情形也較佳。
Abstract
The concept of homeostasis is important and yet difficult to learn. Students have to interrelate various physiological knowledge, catching the abstract and dynamic whole view, so that they may construct a complex framework of the concept of homeostasis. As for concept learning, Slotta & Chi(2006)proposed that it could be facilitated by providing ontological training prior to instruction. While there is not any study on the conceptual change of homeostasis from an ontological perspective, so this study is trying to develop a multiple media instruction material including attributes of emergent casual process and examine how students could benefit from it.
The main research questions were as follows. First, could the multiple media instruction material including attributes of emergent casual process help students learn the concept of homeostasis? Second, as for conceptual ontology, could this instruction help students change from direct casual process to emergent casual process? Third, was there correlation between the achievements of concept learning and conceptual ontology? This research chose three sub-topics among the concept of homeostasis: homeostasis of human temperature, water and blood sugar. Five 7th-grade classes were assigned randomly to three groups: experiment group A (emergent instruction material of two sub-topics), experiment group B (emergent instruction material of one sub-topic), group C (comparison group).
The results were as follows. First, as for concept learning, the experiment groups performed better than the comparison group. Second, as for the conceptual ontology, the experiment groups also gained higher scores than the comparison group, and had greater effects than the comparison group. Third, the achievement of concept learning and the conceptual ontology are significantly related.
參考文獻
一、中文部分
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
邱美虹和林靜雯(2006)。以述詞分析法探究多重類比對兒童電學概念改變之影響。科學教育學刊,第十四卷第一期,55-81。
林靜雯(2006)。由概念演化觀點探究不同教科書教學序列對不同心智模式學生電學學習之影響。國立台灣師大科學教育研究所博士論文(未出版)。
林陳涌和徐毓慧(2002)。國一學生對血糖恆定性的先前概念。科學教育學刊,10(4), 378-387
林英杰(2005)。應用二段式診斷工具探究國中二年級學生對生物恆定性概念的了解。國立嘉義大學科學教育研究所碩士論文(未出版)。
吳幸宜(譯)(2000)。Marget E. Gredler著。學習理論與教學應用。臺北:心理出版社。
涂可欣(譯)(2004)。Mayr, E.著。看!這就是生物學。台北:天下遠見出版社。
陳盈吉(2003)。探就動態類比對於科學概念學習與概念改變歷程之研究─以國二學生學習氣體粒子概念為例。國立台灣師大科學教育研究所碩士論文(未出版)。
傅雪惠(2002)。國小學童溫度相關概念學習路徑之研究。國立新竹教育大學課程與教學研究所碩士論文(未出版)。
鄭昭明(2004)。認知心理學理論與實踐,台北:桂冠出版社。
熊召弟、王美芬、段曉林、熊同鑫(譯)(2000)。Glynn, S. M., Yeany, R.H. & Britton, B. K.著。科學學習心理學。臺北:心理出版社。
潘震澤(2007)。身體的智慧(一)-坎能與恆定觀念。2007年4月3日取自
http://blog.ebook.com.tw/jtpan/Archives/2007/02/15/2233
齊若蘭(譯)(2002)。Waldrop, M. M.著。複雜—走在秩序與混沌邊緣。台北:天下遠見出版社。
二、英文部分
Barak, F., Sheva, B. & Gorodetsky, M. (1999). As ‘process’ as it can get: students’ understanding of biological process. International Journal of Science Education, 21(12), 1281-1292.
Barrass, R. (1984). Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18(3), 201-206.
Camazine, S., Deneubourg, J. L., Franks, N., Sneyd, J. Theraulaz, G., & Bonabeau, E. (2001). Self-Organization in Biological Systems, NJ: Princeton University Press.
Campbell, N. A. (1996). Biology. MA: Addison-Wesley.
Carey, S. (1985). Conceptual change in childhood. The MIT press, Cambridge, M.A.
Chang, S. N. & Chiu, M. H. (2004). Probing students' conceptions concerning homeostasis of blood sugar via concept mapping. Proceedings of the Annual Meeting of the National Association for Research in Science Teaching, April 01-04, Vancouver/Canada.
Chi, M. T. H., Slotta, J. D. and de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
Chi, M.T.H. & Roscoe, R.D. (2002). The processes and challenges of conceptual change. In M. Limon and L. Mason (Eds). Reconsidering Conceptual Change: Issues in Theory and Practice. (pp. 3-27). Kluwer Academic Publishers, The Netherlands.
Chi, M.T.H. (2005). Common sense conceptions of emergent processes: Why some misconceptions are robust? Journal of the Learning Sciences, 14, 161-199.
Christen, M. & Franklin, R. (2002). The Concept of Emergence in Complexity Science: Finding coherence between theory and practice, In Proceedings of the Santa Fe Institute Complex Systems Summer School, 2002. http://www.ini.unizh.ch/markus/articles/Emergence
Duit, R., & Treagust, F. T. (2003). Conceptual change:a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
Emmeche, C., Koppe,S. & Stjernfelt, F. (1997). Explaning Emergence: toeard an ontology of levels. Journal for General Philosophy of Science, 28:83-119.
Ferrari, M. & Chi, M.T.H. (1998). The nature of naive explanations of natural selection. International Journal of Science Education, 20 (10), 1231-1256.
Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perceptions of important and difficult science content. Science Education, 66(4), 531-538.
Fromm, Jochen. (2005). Types and Forms of Emergence. Retrieved November 5, 2006, from: htttp://arxiv.org/pdf/nlin. AO/0506028
Goldstein, J. (1999). Emergence as a Construct: History and Issues. Emergence: Complexity and Organization, 1: 49-92.
Goodwin, B. (2001). How the Leopard Changed Its Spots: The Evolution of Complexity, NJ: Princeton University Press.
Harrison,A G., & Treasgust, D.F.(2000). A typology of school science models. International Journal of Science Education, 22 (9), 1011-1026.
Keil, F. (1979). Semantic and conceptual development: An ontological perspective. MA: Harvard University Press.
Kim, J. (1999). Making sense of emergence, Philosophical Studies, 95, 3-36
Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago, IL: The University of Chicago Press.
Laughlin, R. (2005). A Different Universe: Reinventing Physics from the Bottom Down. NY: Basic Books.
Modell, I.H. (2000). How to help students understand physiology? Emphasize general models. Advances in Physiology Education, 23(1), 101-107.
Moorman, K. & Ram, A. (1996). The Role of Ontology in Creative Understanding. Paper presented at the meeting of the 18th Annual Cognitive Science Conference, San Diego, CA, July 1996.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.
Reiner, M. (2001). Conceptual classroom environment – a system view of learning. International Journal of Science Education, 23(6), 551-568.
Simpson, W. D., & Marek, E. A. (1988). Understandings and misconceptions of biology conceptions held by students attending small high schools and students attending large high schools. Journal of Research in Science Teaching, 25(5), 361-374.
Slotta, J. D., Chi, M. T. H., & Joram, E. (1995). Assigning students’ misclassifications of physics conceptions:An ontological basis for conceptual change. Cognitive and Instruction, 13, 373-400.
Slotta, J. D. & Chi, M.T.H. (2006). The impact of ontology training on conceptual change: Helping students understand the challenging topics in science. Cognition and Instruction.
Smith, L., & Anderson, W.C. (1986). Alternative conceptions of matter cycling in ecosystems. Paper presented at the meeting of National Association for Research in Science Teaching, San Francisco, CA.
Starr, C., & Taggart, R. (2002). Biology: The Unity and Diversity of Life. CA: WadsworthCompany.
Treagust, D. F., Tsui, C. Y. (2004). Conceptual change in learning genetics: an ontological perspective. Research in Science & Technological Education, 22(2), 186-202.
Tyson, L. M., Venville, G. J., Harrision, A. G., & Treagust, D. F.(1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404.
Venville, G., Gribble, S. J., Donovan, J. (2005). An exploration of young children's understandings of genetics concepts from ontological and epistemological perspectives, Science Education, 89(4), 614-633.
Westbrook, S. L., & Marek, E. A. (1992). A cross age study of student understanding of the concept of homeosta sis. Journal of Research in Science Teaching, 29(1), 51-61.
White, A. R. (1975). Conceptual analysis. In C. J. Bontempor and S. J. Odell, eds., The owl of Minerva. New York: McGraw Hill.
Wilensky, U., & Resnick, M. (1998). Thinking in Levels: A Dynamic Systems Perspective to Making Sense of the World. Journal of Science Education and Technology, 8(1).
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and testing computational theories - An embodied modeling approach. Cognition & Instruction, 24(2), 171-209.
Wooley, J. & Lin, H. (2006). Catalyzing Inquiry at the Interface of Computing and Biolog, Paper presented at the Committee on Frontiers at the Interface of Computing and Biology, National Research Council.