研究生: |
洪傳奇 Hung, Chuan-Chi |
---|---|
論文名稱: |
24 GHz與38 GHz功率放大器及線性化技術研究 Research on 24 GHz and 38 GHz Power Amplifiers and Linearization Techniques |
指導教授: |
蔡政翰
Tsai, Jen-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 219 |
中文關鍵詞: | 互補式金屬氧化物半導體 、功率放大器 、變壓器 、線性器 、功率結合技術 、電流結合技術 、38 GHz 、K頻帶 |
英文關鍵詞: | CMOS, power amplifiers, transformer, linearizer, power combining techniques, current combining techniques, 38 GHz, K band |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DEE.001.2019.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一顆電路為利用直接匹配技術之38 GHz二級功率放大器,透過傳輸線匹配網路達成輸出功率阻抗匹配、輸入共軛匹配之效果。當操作頻率為38 GHz且功率放大器的VG與VDD為-0.5 V與4 V時,其功率增益(Power gain)約為15.63 dB,飽和輸出功率Psat約為20.31 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為18.9 dBm,靜態電流約為81.5 mA,最大功率附加效率Peak PAE約為23.8 %,整體晶片佈局面積為1.2 mm × 0.8 mm。
第二顆電路為內具線性器之38 GHz二級功率放大器,線性器架構採用共源極組態。當操作頻率為38 GHz且VG為-0.5 V時,在線性器開啟狀態下(Vctrl = -0.2 V),量測小訊號增益(S21)約為12.61 dB,輸入輸出反射損耗(S11、S22)分別為-7.81 dB與-13.23 dB,三階交互調變失真IMD3在-40 dBc的輸出功率約為14.12 dBm,整體晶片佈局面積為1.2 mm × 0.8 mm。
第三顆電路為內具線性器之38 GHz二級功率放大器,線性器架構採用共源極串級電阻組態。當操作頻率為38 GHz且VG為-0.5 V時,在線性器開啟狀態下(Vctrl = -0.3 V),量測小訊號增益(S21)約為12.43 dB,輸入輸出反射損耗(S11、S22)分別為-9.3 dB與-12.71 dB,三階交互調變失真IMD3在-40 dBc的輸出功率約為13.55 dBm,整體晶片佈局面積為1.2 mm × 0.8 mm。
第四顆電路為內具線性器之38 GHz二級功率放大器,線性器架構採用疊接組態。當操作頻率為38 GHz且VG為-0.5 V時,在線性器開啟狀態下(Vctrl = -0.4 V),量測小訊號增益(S21)約為11.56 dB,輸入輸出反射損耗(S11、S22)分別為-9.28 dB與-12.3 dB,三階交互調變失真IMD3在-40 dBc的輸出功率約為14.42 dBm,整體晶片佈局面積為1.2 mm × 0.8 mm。
第五顆電路為利用變壓器功率結合技術之38 GHz功率放大器,透過變壓器的功率結合與阻抗轉換特性來達成輸入共軛匹配與輸出功率匹配。當操作頻率為38 GHz且VG1為0.6 V時,功率增益(Power gain)約為15.07 dB,飽和輸出功率Psat約為19.98 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為15.05 dBm,靜態電流約為114 mA,最大功率附加效率Peak PAE約為29.42 %,整體晶片佈局面積為0.47 mm × 0.57 mm。
第六顆電路為利用變壓器電流結合技術之24 GHz功率放大器,採用二級功率放大器的方式以提升增益,接著使用變壓器電流結合技術來提高輸出功率。當操作頻率為24 GHz且VG1為1 V時,功率增益(Power gain)約為14.07 dB,飽和輸出功率Psat約為23.9 dBm,1-dB增益壓縮點之輸出功率(OP1dB)約為19.07 dBm,靜態電流約為354.06 mA,最大功率附加效率Peak PAE約為13 %,整體晶片佈局面積為0.99 mm × 0.91 mm。
The first circuit is a 38 GHz two stage power amplifier utilize transmission line matching network to achieve output matching and input impedance. At 38 GHz and the VG and VDD of the power amplifier operate in -0.5 V and 4 V, the power amplifier exhibits the power gain of 15.63 dB, the saturated output power of 20.31 dBm, the output power of 18.9 dBm at 1-dB compression point, the quiescent current of approximately 81.5 mA and the maximum power added efficiency of approximately 23.8%. The chip size is 1.2 mm × 0.8 mm.
The second circuit is a 38 GHz two stage power amplifier with built-in linearizer, the frame of the linearizer is using common source configuration. At 38 GHz and the VG and VDD of the power amplifier operate in -0.5 V and 4 V, when the linearizer is on (Vctrl = -0.2 V), the power amplifier exhibits the small signal gain (S21) of approximately 12.61 dB, the input and output reflection coefficient (S11, S22) of -7.81 dB and -13.23 dB, and the third-order intermodulation distortion (IMD3) can be maintained under -40 dBc when the output power less than 14.12 dBm. The chip size is 1.2 mm × 0.8 mm.
The third circuit is a 38 GHz two stage power amplifier with built-in linearizer, the frame of the linearizer is using common source cascade resistance configuration. At 38 GHz and the VG and VDD of the power amplifier operate in -0.5 V and 4 V, when the linearizer is on (Vctrl = -0.3 V), the power amplifier exhibits the small signal gain (S21) of approximately 12.43 dB, the input and output reflection coefficient (S11, S22) of -9.23 dB and -11.81 dB, and the third-order intermodulation distortion (IMD3) can be maintained under -40 dBc when the output power less than 13.55 dBm. The chip size is 1.2 mm × 0.8 mm.
The fourth circuit is a 38 GHz two stage power amplifier with built-in linearizer, the frame of the linearizer is using cascode configuration. At 38 GHz and the VG and VDD of the power amplifier operate in -0.5 V and 4 V, when the linearizer is on (Vctrl = -0.4 V), the power amplifier exhibits the small signal gain (S21) of approximately 11.56 dB, the input and output reflection coefficient (S11, S22) of -9.28 dB and -12.3 dB, and the third-order intermodulation distortion (IMD3) can be maintained under -40 dBc when the output power less than 14.42 dBm. The chip size is 1.2 mm × 0.8 mm.
The fifth circuit is a 38 GHz power amplifier with transformer power combining technique. To achieve input impedance matching, output power matching, we utilize the transformer to implement the impedance conversion and the power combining. At 38 GHz and the VG1 of the power amplifier operate in 0.6 V, the power amplifier exhibits the power gain of 15.07 dB, the saturated output power of 19.98 dBm, the output power of 15.05 dBm at 1-dB compression point, the quiescent current of approximately 114 mA and the maximum power added efficiency of approximately 29.42 %. The chip size is 0.47 mm × 0.57 mm.
The last circuit is a 24 GHz power amplifier with transformer power combining technique and current combining technique. To achieve high output power, we utilize the current combining technique. At 24 GHz and the VG1 of the power amplifier operate in 1 V, the power amplifier exhibits the power gain of 18.07 dB, the saturated output power of 23.9 dBm, the output power of 19.07 dBm at 1-dB compression point, the quiescent current of approximately 354.06 mA and the maximum power added efficiency of approximately 13.63 %. The chip size is 0.99 mm × 0.91 mm.
[1] H. Alsuraisry, S. T. Yen, J. H. Tsai, and T. W. Huang, “Ka-band Up-link CMOS/GaAs Power Amplifier Design for Satellite-based Wireless Sensor,” Topical Workshop on Internet of Space (TWIOS)., Phoenix, AZ, pp. 1-3, March 2017.
[2] A. Bessemoulin, P. Evans, T. Fattorini, "38 GHz Driver and Power Amplifier MMICs in Surface Mount Packages," proceedings of the 7th European Microwave Integrated Circuits Conference., Amsterdam, pp. 457-460, Oct. 2012.
[3] J. H. Tsai, Y. C. Cheng, C. C. Hung, K. C. Chiang and W. T. Li, “A 37-40 GHz Power Amplifier for 5G Phased Array Applications Using 0.1-um GaAs pHEMT Process,” IEEE 7th International Conference on Consumer Electronics – Berling., pp. 85-87, Sep. 2017.
[4] Y. N. Jen, J. H. Tsai, C. T. Peng and T. W. Huang, “A 20 to 24 GHz +16.8 dBm Fully Integrated Power Amplifier Using 0.18 μm CMOS Process,”IEEE Microwave and Wireless Components Letters., vol. 19, no. 1, pp. 42-44, Jan. 2009.
[5] P.-C. Huang, L.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 22-dBm 24-GHz PowerAmplifier Using 0.18-um CMOS Technology,” IEEE MTT-S International Microwave Symposium Digest (MTT)., Anaheim, pp. 248-251, May 2010.
[6] S. N. Ali et. Al. “A28 GHz 41%-PAE Linear CMOS Power Amplifier Using a Transformer-Based AM-PM Distortion –Correction Technique for 5G Phased Arrays,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)., pp. 406-408.
[7] H. Jia, C. C. Prawoto, B. Chi, Z. Wang, and C. P. Yue, “A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS,” IEEE Trans. Circuit Systems., vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[8] H. Wang, Y. –H. Hsiao, K.-S. Yeh, J,-K, Wang, Y.-H. Lin, “Millimeter-wave amplifiers in 40-nm CMOS,” IEEE APMC Proceeding., Dec. 2016 .
[9] S. Shakib, M. Elkholy, J. Dunworth, V. Aparin, and K. Entesari, “A wideband 28 GHz power amplifier supporting 8×100 MHz carrier aggregation for 5G in 40nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC)., pp. 44-45, Feb. 2017.
[10] Y. Zhang and P. Reynaert, “A high-efficiency linear power amplifier for 28 GHz mobile communications in 40nm CMOS,” in Proc. RFIC., pp. 33-36. 2017.
[11] M. Vigilante and P. Reynaert, “A wideband class-AB power amplifier with 29-57-GHz AM-PM compensation in 0.9-V 28-nm bulk CMOS,” IEEE J. Solid-State Circurts., vol. 53, no. 5, pp. 1288-1301, May 2018.
[12] S. Shakib, H.-C. Park, J. Dunworth, V. Aparin, and K. Entesari, “A highly efficiency and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS,” IEEE J. Solid-State Circuits., vol. 51, no. 12, pp. 3020-3036, Dec. 2016.
[13] S. H. Chang, C, N. Chen, H. Wang, “A Ka-Band Dual-Mode Power Amplifier in 65-nm CMOS Technology,” IEEE Microw. Wireless Components Letters., vol. 28, no. 8, Aug. 2018.
[14] C. C. Kuo, Y. H. Lin, H. C. Lu, and H. Wang, “A K-band Compact Fully Integrated Transformer Power Amplifier in 0.18-μm CMOS,” Asia-Pacific Microwave Conference Proceedings (APMC)., Seoul, pp. 597-599, Nov. 2013.
[15] C. C. Hung, J. L. Kuo, K. Y. Lin and H. Wang, “A 22.5-dB Gain, 20.1-dBm Output Power K-band Power Amplifier in 0.18-µm CMOS,” 2010 IEEE Radio Frequency Integrated Circuits Symposium., Anaheim, CA, pp. 557-560, May 2010.
[16] H. T. Dabag, et al., “Analysis and design of stacked-FET millimeterwave power amplifiers, ” in Proc. IEEE Transaction on Microwave Theory and Techniques., vol. 61, no. 4, pp. 1543-1556, April 2013.
[17] J. H. Tsai, and T. W. Huang, “A 38-46 GHz MMIC Doherty Power Amplifier Using Post-Distortion Linearization,” IEEE Microwave and Wireless Components Letters., vol. 17, no. 5, pp. 388-390, April 2007.
[18] J. Kim, W. Kim, H. Jeon, Y.-Y. Huang, Y. Yoon, H. Kim, C.-H. Lee, and K. T. Kornegay, “A Fully-Integrated High-Power Linear CMOS Power Amplifier With a Parallel-Series Combining Transformer,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 599-614, Mar. 2012.
[19] J. Oh, B. Ku, and S. Hong, “A 77-GHz CMOS Power Amplifier With a Parallel Power Combiner Based on Transmission-Line Transformer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2662-2669, July 2013.
[20] C.-C. Kuo, Y.-H. Lin, H.-C. Lu, and H. Wangand, “A K-band Compact Fully Integrated Transformer Power Amplifier in 0.18-μm CMOS,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), pp. 597-599, Nov. 2013.
[21] J.-F. Yeh, Y.-F. Hsiao, J.-H. Tsai, T.-W. Huang, “MMW Ultra-Compact -Way Transformer PAs Using Bowtie-Radial Architecture in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 460-462, July 2015.
[22] B. Leite, E. Kerhervé, and D. Belot, “Design of 28 nm CMOS integrated transformers for a 60 GHz power amplifier,” 2015 28th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1-6, Aug 2015.
[23] J.-H. Cheng, S.-J. Luo, W.-J. Lin, J.-H. Tsai, and T.-W. Huang, “A 24-GHz Transformer-Based Stacked-FET Power Amplifier in 90-nm CMOS Technology,” 2015 Asia-Pacific Microwave Conference (APMC), vol. 3, pp. 1-3, Dec. 2015.
[24] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed Active Transformer—A New Power-Combining and Impedance-Transformation Technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
[25] J. –F, Yeh, L
[26] A.M. Niknejad, electromagnetics for high-speed analog and digital communication circuits, Cambridge University Press, Mar. 2007.
[27] A. M. Niknejad, D. Chowdhury, and J. Chen, “Design of CMOS Power Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1784-1796, Jun. 2012.
[28] V. Freitas, J.-D. Arnould, and P. Ferrari, “General Expression for Tunable Matching Network Efficiency in the case of complex impedances,” Microwave & Optoelectronics Conference (IMOC), pp. 1-5, Aug. 2013.
[29] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and Analysis of a 44-GHz MMIC Low-Loss Built-In Linearizer for High-Linearity Medium Power Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2487-2496, Jun. 2006.
[30] K.-Y. Kao, Y.-C. Hsu, K.-W. Chen, and K.-Y. Lin, “Phase-Delay Cold-FET Pre-Distortion Linearizer for Millimeter-Wave CMOS Power Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[31] J.-F. Yeh, J.-H. Cheng, J.-H. Tsai, and T.-W. Huang, “A 57-66 GHz power amplifier with a linearization technique in 65-nm CMOS technology,” Microwave Conference (EuMC), pp. 1253-1256, Oct. 2014.