簡易檢索 / 詳目顯示

研究生: 莊銘源
Chuang, Ming-Yuan
論文名稱: 研究脈衝雷射結構製程於 IC 堆疊元件特性及傷口酸鹼值之應用
Investigation of Pulse Laser Structuring Techniques on IC Stacked Device Characteristics and pH Sensing for Wound Monitoring
指導教授: 張天立
Chang, Tien-Li
口試委員: 曾釋鋒 劉正哲 蕭文澤 鄭淳護 張天立
口試日期: 2021/08/17
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 雷射堆疊結構IC元件酸鹼值檢測傷口檢測
英文關鍵詞: Laser, Stacked structures, IC device, pH detection, Wound detection
DOI URL: http://doi.org/10.6345/NTNU202101174
論文種類: 學術論文
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,高科技生醫檢測元件及系統產品不斷更新與改良,其積體電路(Integrated Circuit, IC)晶片的需求也不斷增加。為有效提高產能,本研究結合先進脈衝雷射結構技術(Advanced pulse laser structuring techniques)進行生醫感測元件的研製與IC晶片的製程改良。本研究會採用奈秒脈衝雷射(Nanosecond pulsed laser, NS laser)與皮秒脈衝雷射(Picosecond pulsed laser, PS laser)技術,在微結構(Microstructures)和薄膜(Thin films)製程上進行探討,並利用雷射結構技術於堆疊元件(Stacked device)進行製程,研究元件之電特性變化。本研究使用的IC晶片是以矽(Silicon, Si)為基材,並由二氧化矽(Silicon dioxide, SiO2)、鋁(Aluminum, Al)和氮化矽(Silicon nitride, Si3N4)薄膜堆疊而成。藉由調控雷射參數進行實驗,顯示在能量密度為4.11 J/cm2時,該元件的電流值能提升至100 mA,證實脈衝雷射製程可有效提升元件的電特性。
    此外,本研究利用脈衝雷射圖案化電極製程,進行酸鹼值(pH value)檢測元件開發,其結構是以氧化銦錫(Indium tin oxide, ITO)玻璃為基材,結合厚度400 nm的鋁和14 nm的氧化銦鎵鋅(Indium gallium zinc oxide, IGZO)薄膜研製而成,而為了增加元件檢測面積,會選用指叉狀電極(Interdigitated electrodes, IDEs)設計。本研究採用定電流(200 μA)方式進行量測,觀察pH濃度(pH 2-10)和不同指叉間距的電性變化。根據實驗結果,本研究完成pH檢測元件,其靈敏度(Sensitivity)最高可達56.67 mV,測試呈現良好的可靠度,且能實際應用於傷口檢測(pH 6.5-7.3)。

    In recent years, the high-tech biomedical sensing and system products have been continuously updated and improved and the demand for integrated circuit (IC) chips has also been increasing. To effectively increase production capacity, the advanced pulse laser structuring techniques were used to fabricate the bio-sensing devices and improve the IC process. In this study, the nanosecond pulsed laser (NS laser) and picosecond pulsed laser (PS laser) were fabricated on the microstructure and thin-film processes. And the stacked devices were formed by the laser-structure technique, in which the electrical characteristics of devices must be investigated. The IC device used was based on silicon (Si) and stacked by thin films of silicon dioxide (SiO2), aluminum (Al), and silicon nitride (Si3N4). By controlling the experimental laser parameters, it was found that the current of IC device can be increased to 100 mA at 4.11 J/cm2, demonstrating the pulse laser process can effectively improve the electrical characteristics of IC device.
    Additionally, the pH sensing device was fabricated by pulse laser-patterning process on electrode device. The structure device based on indium tin oxide (ITO) glass substrate stacked the thin-film layers of Al and indium gallium zinc oxide (IGZO), which can be 400 nm, and 14 nm, respectively. To increase the sensing region, the design of interdigitated electrodes (IDEs) was used. The constant current of 200 μA of the study was used to measure the pH concentration (pH 2-10) in the electrical changes at the different interdigital distances. According to the results, the development of pH sensing device indicated the good reliability, and its sensitivity was up to 56.67 mV for wound detection (pH 6.5-7.3).

    第一章 緒論 1 1.1 雷射簡介 1 1.2 雷射結構製程簡介 2 1.3 IC晶片簡介 3 1.4 生醫感測器簡介 7 1.5 研究背景與目的 8 第二章 文獻回顧 11 2.1 脈衝雷射製程機制 11 2.1.1 短脈衝雷射 12 2.1.2 超短脈衝雷射 19 2.2 雷射製程應用 24 2.2.1 雷射加工於IC元件 24 2.2.2 雷射直寫電極技術 30 2.3 生醫感測器應用 36 第三章 研究方法與設計 42 3.1 實驗設計 42 3.2 雷射製程 44 3.2.1 雷射系統 44 3.2.2 雷射加工之剝離閥值 47 3.2.3 雷射加工之重疊率 48 3.3 IC元件製程 50 3.4 pH感測元件設計 51 3.4.1 電極設計 54 3.4.2 pH感測機制 54 3.4.3 pH靈敏度響應 56 3.5 生物檢體製備 56 3.6 實驗設備 57 第四章 結果與討論 59 4.1 奈秒與皮秒雷射的影響差異 59 4.1.1 雷射之剝離閥值差異 59 4.1.2 材料之表面形貌影響 60 4.2 脈衝雷射應用於IC堆疊元件 64 4.2.1 表面形貌探討 64 4.2.2 材料分析探討 70 4.2.3 電特性探討 77 4.3 雷射應用於pH感測器研製 80 4.3.1 雷射加工與表面特性分析 80 4.3.2 感測器元件之電特性分析 84 4.3.3 pH量測分析 84 4.3.4 傷口檢測 95 第五章 結論 101 5.1 脈衝雷射加工影響之比較 101 5.2 雷射剝離IC堆疊元件之特性變化 102 5.3 雷射輔助pH感測器研製 103 參考文獻 105

    [1] Laser Processing Market with COVID-19 Impact analysis by Laser Type, Configuration, Revenue, Application, End-user Industry, and Region - Global Forecast to 2025, Laser Processing Market, Markets and Markets (2020).
    [2] S. Kiiper, M. Stuke, Femtosecond UV excimer laser ablation, Applied Physics B, Vol. 44, 199-204 (1987).
    [3] C. Momma, B. N. Chichkov, S. Nolte, F. V. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen, Short-pulse laser ablation of solid targets, Optics Communications, Vol. 129, 134-142 (1996).
    [4] S. A. Ahmed, M. Mohsin, S. M. Z. Ali, Survey and technological analysis of laser and its defense applications, Defence Technology, Vol. 17, 583-592 (2021).
    [5] K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt, Metal Ablation with Short and Ultrashort Laser Pulses, Physics Procedia, Vol. 12, 230-238 (2011).
    [6] H. Cao, R. Chriki, Complex lasers with controllable coherence, Nature Reviews Physics, Vol. 1, 156-168 (2019).
    [7] C. F. Chien, C. Y. Hsu, J. R. Morrison, R. Dou, Semiconductor manufacturing intelligence and automation, Computers & Industrial Engineering, Vol. 99, 315-317 (2016).
    [8] C. F. Chien, S. Dauzère-Pérès, H. Ehm, J. Fowler, Z. Jiang, S. Krishnaswamy, T. E. Lee, L. Mönch, R. Uzsoy, Modelling and analysis of semiconductor manufacturing in a shrinking world: Challenges and successes, European Journal of Industrial Engineering, Vol. 5, 254-271 (2011).
    [9] C. Y. Hsu, W. J. Chen, J. C. Chien, Similarity matching of wafer bin maps for manufacturing intelligence to empower Industry 3.5 for semiconductor manufacturing, Computers & Industrial Engineering, Vol. 142, 106358 (2020).
    [10] M. Qiao, L. Liang, J. Zu, D. Hou, Z. Li, B. Zhang, A review of high-voltage integrated power device for AC/DC switching application, Microelectronic Engineering, Vol. 232, 111416 (2020).
    [11] J. Sydow, G. M. Seitz, Open innovation at the interorganizational network level-Stretching practices to face technological discontinuities in the semiconductor industry, Technological Forecasting and Social Change, Vol. 155, 119398 (2020).
    [12] P. V. Gerven, ASML for beginners, BITS&CHIPS (2017).
    [13] C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures, Analytical Chemistry, Vol. 87, 230-249 (2015).
    [14] Global Biosensors Market to Register 8.1% CAGR through 2026: Grand View Research, Market Reports, Printed Electronics (2019).
    [15] C. Schultz, M. Fenske, J. Dagar, A. Zeiser, A. Bartelt, R. Schlatmann, E. Unger, B. Stegemann, Ablation mechanisms of nanosecond and picosecond laser scribing for metal halide perovskite module interconnection-An experimental and numerical analysis, Solar Energy, Vol. 198, 410-418 (2020).
    [16] B. Soltani, B. Azarhoushang, A. Zahedi, Laser ablation mechanism of silicon nitride with nanosecond and picosecond lasers, Optics and Laser Technology, Vol. 119, 105644 (2019).
    [17] K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, M. Schmidt, Metal Ablation with Short and Ultrashort Laser Pulses, Physics Procedia, Vol. 12, 230-238 (2011).
    [18] G. H. Petti, R. Sauerbrey, Pulsed ultraviolet laser ablation, Applied Physics A Solids and Surfaces, Vol. 56, 51-63 (1993).
    [19] D. H. Kam, J. Kim, J. Mazumder, Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon, Journal of Manufacturing Processes, Vol. 35, 99-106 (2018).
    [20] J. Zhao, J. Guo, P. Shrotriya, Y. Wang, Y. Han, Y. Dong, S. Yang, A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface, Optics and Laser Technology, Vol. 117, 134-141 (2019).
    [21] S. Lai, P. Lorenz, M. Ehrhardt, B. Han, D. Hirsch, I. Zagoranskiy, J. Lu, K. Zimmer, Laser-induced frontside etching of silicon using 1550-nm nanosecond laser pulses, Optics and Lasers in Engineering, Vol. 122, 245-253 (2019).
    [22] K. Momoki, T. Manabe, L. Li, J. Yan, Silicon nanoparticle generation and deposition on glass from waste silicon powder by nanosecond pulsed laser irradiation, Materials Science in Semiconductor Processing, Vol. 111, 104998 (2020).
    [23] X. Liu, D. Du, G. Mourou, Laser ablation and micromachining with ultrshort laser pulses, IEEE Journal of Quantum Electronics, Vol. 33, 1706-1716 (1997).
    [24] A. Žemaitis, M. Gaidys, M. Brikas, Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model, Scientific Reports, Vol. 8, 173-176 (2018).
    [25] X. Sedao, M. Lenci, A. Rudenko, N. Faure, A. P. Hamri, J. P. Colombier, C. Mauclair, Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces, Optics and Lasers in Engineering, Vol. 116, 68-74 (2019).
    [26] Y. Zhao, Y. L. Zhao, L. K. Wang, Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor, Sensors and Actuators A, Vol. 309, 112-117 (2020).
    [27] J. Remes, H. Moilanen, S. Leppävuori, Enhancing IC repairs by combining laser direct-writing of Cu and FIB techniques, Microelectronics Reliability, Vol. 39, 997-1001 (1999).
    [28] M. Halbwax, T. Sarnet, J. Hermann, P. Delaporte, M. Sentis, L. Fares, G. Haller, Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis, Applied Surface Science, Vol. 254, 911-915 (2007).
    [29] J. Bovatsek, A. Tamhankar, R. S. Patel, N. M. Bulgakova, J. Bonse, Thin film removal mechanisms in ns-laser processing of photovoltaic materials, Thin Solid Films, Vol. 518, 2897-2904 (2010).
    [30] C. C. Yang, C. N. Hsu, K. C. Huang, S. F. Tseng, W. T. Hsiao, Multilayer stack materials on silicon-based wafer dicing processes using ultraviolet laser direct dicing and milling methods, Optics & Laser Technology, Vol. 108, 441-449 (2018).
    [31] X. Cheng, L. Yang, M. Wang, Y. Cai, Y. Wang, Z. Ren, Laser beam induced thermal-crack propagation for asymmetric linear cutting of silicon wafer, Optics & Laser Technology, Vol. 120, 105765 (2019).
    [32] C. Lu, Y. Gao, G. Yu, M. Xu, J. Tan, F. Xuan, Laser-microengineered flexible electrodes with enhanced sensitivity for wearable pressure sensors, Sensors and Actuators A: Physical, Vol. 281, 124-129 (2018).
    [33] C. P. Wang, C. P. Chou, P. C. Wang, T. L. Chang, Flexible graphene-based micro-capacitors using ultrafast laser ablation, Microelectronic Engineering, Vol. 215, 111000 (2019).
    [34] C. Zhu, L. Q. Tao, Y. Wang, K. Zheng, J. Yu, X. Li, X. Chen, Y. Huang, Graphene oxide humidity sensor with laser-induced graphene porous electrodes, Sensors and Actuators B: Chemical, Vol. 325, 128790 (2020).
    [35] S. F. Tseng, C. H. Liao, Investigation of interactions between ultrafast laser beams and screen-printed silver nanopaste films, Applied Surface Science, Vol. 512, 144696 (2020).
    [36] J. H. Yoon, S. B. Hong, S. O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, Journal of Colloid and Interface Science, Vol. 490, 53-58 (2017).
    [37] M. S. Chae, J. H. Park, H. W. Son, K. S. Hwang, T. G. Kim, IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform, Sensors and Actuators B: Chemical, Vol. 262, 876-883 (2018).
    [38] Y. Kim, Y. J. Tak, H. J. Kim, Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors, Scientific Reports, Vol. 8, 46-55 (2018).
    [39] L. Manjakkal, S. Dervin, R. Dahiya, Flexible pH sensor based on a conductive PANI membrane for pH monitoring, RSC Advances, Vol. 10, 85-94 (2020).
    [40] R. Kumar, R. Singh, D.P. Singh, E. Joanni, R. M. Yadav, S.A. Moshkalev, Laser-assisted synthesis reduction and micro-patterning of graphene: Recent progress and applications, Coordination Chemistry Reviews, Vol. 342, 34-79 (2017).
    [41] G. Pal, A. Dutta, K. Mitra, M. S. Grace, A. Amat, T. B. Romanczyk, X. J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes, Photochem Photobiol B, Vol. 86, 252-261 (2007).
    [42] T. L. Chang, T. K. Tsai, H. P. Yang, J. Z. Huang, Effect of ultra-fast laser texturing on surface wettability of microfluidic channels, Microelectron Engineer, Vol. 98, 684-688 (2012).
    [43] D. H. Duc, I. Naoki, F. Kazuyoshi, A study of near-infrared nanosecond laser ablation of silicon carbide, International Journal of Heat and Mass Transfer, Vol. 65, 713-718 (2013).
    [44] W. Pacquentin, N. Caron, R. Oltra, Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance, Applied Surface Science, Vol. 288, 34-39 (2014).
    [45] S. F. Tseng, W. T. Hsiao, K. C. Huang, D. Chiang, The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates, Applied Surface Science, Vol. 257, 8813-8819 (2011).
    [46] R. Igreja, C. Dias, Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure, Sensors and Actuators A: Physical, Vol. 112, 291-301 (2004).
    [47] C. Kamble, M. Panse, IDE embedded tungsten trioxide gas sensor for sensitive NO2 detection, Materials Chemistry and Physics, Vol. 224, 257-263 (2019).
    [48] D. J. Yanga, G. C. Whitfield, N. G. Cho, P. S. Cho, I. D. Kim, H. M. Saltsburg, H. L. Tuller, Amorphous InGaZnO4 films: gas sensor response and stability, Sensors and Actuators B, Vol. 171, 1166-1171 (2012).
    [49] N. G. Cho, I. D. Kim, NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route, Sensors and Actuators B, Vol. 160, 499-504 (2011).
    [50] J. Chou, The Characteristic Analysis of IGZO/Al pH Sensor and Glucose Biosensor in Static and Dynamic Measurements, IEEE Sensors Journal, Vol. 16, 8509-8516 (2016).
    [51] B. R. Huang, J. C. Lin, Y. K. Yang, ZnO/silicon nanowire hybrids extended-gate field-effect transistors as pH sensors, Journal of the Electrochemical Society, Vol. 160, 78-82 (2013).
    [52] J. F. Hsu, B. R. Huang, C. S. Huang, H. L. Chen, Silicon nanowires as pH sensor, Japanese Journal of Applied Physics, Vol. 44, 2626-2629 (2005).
    [53] A. Fulati, S. M. U. Ali, M. Riaz, G. Amin, O. Nur, M. Willander, Miniaturized pH sensors based on zinc oxide nanotubes/nanorods, Sensors, Vol. 9, 8911-8923 (2009).

    無法下載圖示 本全文未授權公開
    QR CODE