簡易檢索 / 詳目顯示

研究生: 陳庭芸
Chen, Ting-Yun
論文名稱: 三共振模態可撓式RGB光學濾波片白光照明之應用
Flexible and ultranarrow transmissive color filters by simultaneous excitations of triple resonant eigenmodes in a hybrid metallic–optical Tamm state structure
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 49
中文關鍵詞: 彩色穿透式濾波片塔米電漿光學塔米能態法布理-布洛共振腔布拉格反射鏡彈性且可攜式超窄帶寬薄膜沉積技術
英文關鍵詞: transmissive color filter, Tamm plasmon, optical Tamm state, Fabry–Pérot cavity, distributed Bragg reflector, flexible and wearable, ultranarrow bandwidth, thin-film depositions
DOI URL: http://doi.org/10.6345/NTNU202001427
論文種類: 學術論文
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們實現了一種可調式混合金屬-光學塔米能態的穿透式彩色濾光片,此裝置由雙介電質分佈的布拉格反射器(DBRs),與最上層的金屬薄膜所組成,並同時達到激發塔米電漿(TP),即光學塔米能態(OTS)和法布理-布洛(FP)共振模態,使三共振模態不論是在輸出光譜或欲達成的色度上,皆可坐落在可見光範圍內。我們也實際製作出了,可以透過簡單的設計,改變雙DBR的中心波長,便可調整局限在裝置內部的共振模態,且無論共振波長如何調整,都能保持超窄帶寬。藉由建構出較大的色域空間,在此CIE色域範圍內,只需要調整簡單的變數,便可以達到更多CIE坐標,顏色選擇性相對提高。接著我們進一步展示,由於我們的彩色濾光片僅需要透過簡單的薄膜沉積製程便可以將我們所提出的結構可以完整的沉積到軟性基板上,從而通過改變其彎曲曲率,即可達到調節穿透光譜以及欲達成的色彩外觀。本實驗的可調式彩色濾光片可用於各種應用,例如建築中的美學彩色裝飾,低成本和可攜式光譜分析儀以及光學應變/變形傳感器。

    We demonstrate a flexible transmissive color filter based on a hybrid metallic–optical Tamm state device, composed of a thin metallic film on top of dual dielectric distributed Bragg reflectors (DBRs), to simultaneously excite the Tamm plasmon (TP), the optical Tamm state (OTS), and the Fabry–Pérot (FP) resonant eigenmodes for achieving, spectrally and chromatically, triple transmittance peaks in the visible light range. We show that the resonant eigenmodes confined inside the device can be tuned at will by simply adjusting the designed Bragg wavelengths of the dual DBRs and retain an ultranarrow bandwidth regardless of resonant wavelength, creating the desired chromaticity points and constructing a large color gamut space in the CIE coordinate. We further show that, due to the fabrication simplicity of our color filter involving only thin-film deposition, the proposed structure can be easily integrated onto flexible substrates, leading to tunable transmittance spectrum as well as the color appearance by simply changing its bending curvature. The tunable color filter reported herein can be employed for various applications such as aesthetical color decorations in architectures, low-cost and portable spectral analyzers, and optical strain/deformation sensors.

    致謝 i 摘要 ii Abstract iii 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 論文架構 4 第二章 基本原理及文獻回顧 5 2.1 介電質材料介紹 5 2.1.1 DBR工作原理與特性 6 2.1.2 法布理-布洛共振腔Fabry-Perot Etlon 6 2.2 濾波片應用介紹 8 2.3 薄膜光學特性 9 2.3.1 濾波片的設計方式 9 2.3.2 四分之一波長膜堆 10 2.4 TP、FP與OTS三共振模態 14 第三章 實驗方法及使用材料 20 3.1 實驗流程 20 3.2 Comsol模擬 21 3.3 設計DBR高反射鏡與實驗參數 21 3.3.1 基板清潔 23 3.3.2 蒸鍍條件 24 3.5 積分球-穿透反射量測系統 26 第四章 結果與討論 27 4.1 COMSOL模擬Data整理與分析 27 4.1.1 Ag厚度選擇 27 4.1.2 DBR結構設計 29 I. 單一DBR結構 29 II.DBR疊加組合 30 4.1.3 DBR改變中心波長對整體穿透光譜影響的分析與討論 32 4.1.4 DBR改變結構週期數對整體穿透光譜影響的分析與討論 34 4.2 高反射鏡分析 35 第五章 結論與未來展望 45 參考文獻 46

    [1] B. R. Chiou, H. C. Lee, Y. F. Jang, Z. P. Yang, Y. C. Wang, M. Sarma, H.-C. Su, K. T. Wong, Org. Electron. 2017, 48, 248.
    [2] C. Liu, Q. Zhang, D. Wang, G. Zhao, X. Cai, L. Li, H. Ding, K. Zhang, H. Wang, D. Kong, L. Yin, L. Liu, G. Zou, L. Zhao, X. Sheng, Adv. Opt. Mater. 2018, 6, 1800146.
    [3] J. H. Park, I. J. Ko, G. W. Kim, H. Lee, S. H. Jeong, J. Y. Lee, R. Lampande, J. H. Kwon, Opt. Express 2019, 27, 25531.
    [4] C. Ji, Z. Zhang, T. Masuda, Y. Kudo, L. Jay Guo, Nanoscale Horiz., 2019, 4, 874.
    [5] G. J. Lee, Y. J. Kim, H. M. Kim, Y. J. Yoo, Y. M. Song, Adv. Opt. Mater. 2018, 6, 1800707.
    [6] C. Sheng, Y. An, J. Du, and X. Li, ACS Photonics 2019, 6, 2545.
    [7] L. Zhu, A. Raman, S. Fan, Appl. Phys. Lett. 2013, 103, 223902.
    [8] X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.‐W. Qiu, J. K. W. Yang, Nat. Commun. 2014, 5, 5361.
    [9] E. Heydari, J. R. Sperling, S. L. Neale, A. W. Clark, Adv. Funct. Mater. 2017, 27, 1701866.
    [10] E. D. Finlayson, I. R. Hooper, C. R. Lawrence, M. Heath, D. Anderson, J. R. Sambles, P. Vukusic, Adv. Opt. Mater. 2018, 6, 1700843.
    [11] R. W. Sabnis, Displays,1999, 20, 119.
    [12] J. B. Lassiter, X. Chen, X. Liu, C. Ciracì, T. B. Hoang, S. Larouche, S.-H. Oh, M. H. Mikkelsen, D. R. Smith, ACS Photonics 2014, 1, 1212.
    [13] J. Wang, Q. Fan, S. Zhang, Z. Zhang, H. Zhang, Y. Liang, X. Cao, T. X., Appl. Phys. Lett. 2017, 110, 031110.
    [14] K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, J. K. W. Yang, Nat. Nanotechnol. 2012, 7, 557.
    [15] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, Nat. Commun. 2011, 2, 517.
    [16] K.-T. Lee, S. Seo, L. J. Guo, Adv. Opt. Mater. 2015, 3, 347.
    [17] Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, H. Duan, Adv. Opt. Mater. 2016, 4, 1196.
    [18] M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, A. Karlsson, M. Kamp, A. Forchel, Appl. Phys. Lett. 2003, 83, 223902.
    [19] E.-H. Cho, H.-S. Kim, B.-H. Cheong, P. Oleg, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, Y.-P. Park, Opt. Express 2009, 17, 8621.
    [20] A. Arsenault, T. Clark, G. von Freymann, et al. Nature Mater 2006, 5, 179.
    [21] T. Wagner, C. F. Werner, K. Miyamoto, M. J. Schöning, T. Yoshinobu, Sens. Actuators B Chem., 2012, 170, 34.
    [22] C. Xiang, W. Koo, F. So, H. Sasabe, J. Kido, Light: Sci. Appl. 2013, 2, e74.
    [23] A. V. Kavokin, I. A. Shelykh, G. Malpuech, Phys. Rev. B 2005, 72, 233102.
    [24] M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, I. A. Shelykh, Phys. Rev. B 2007, 76, 165415.
    [25] R. Brückner, M. Sudzius, S. Hintschich, H. Fröb, V. G. Lyssenko, K. Leo, Phys. Rev. B 2011, 83, 033405.
    [26] O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaˆıtre, P. Senellart, Phys. Rev. Lett. 2011, 107, 247402.
    [27] C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant,G. Brucoli, A. Lemaitre, P. Senellart, J. Bellessa, Nano Lett. 2013, 13, 3179.
    [28] N. Lundt et al., Nature Comm. 2016, 7, 13328.
    [29] Z. Wang, J. K. Clark, Y. L. Ho, S. Volz, H. Daiguji, J.-J. Delauna, ACS Photonics 2020, 7, 1569.
    [30] X. L. Zhang, J. F. Song, J. Feng, H. B. Sun, Opt. Lett. 2013, 38, 4382.
    [31] Y. Fei, Y. Liu, D. Dong, K. Gao, S. Ren, Y. Fan, Opt. Express 2018, 26, 34872
    [32] 陈浩然. 一种可能的 LCD 构型[J]. 计算机科学与应用, 2020, 10(5): 944-949.
    [33] 李正中。薄膜光學與鍍膜技術。第八版。藝軒圖書出版社。新北市。2016
    [34] Osting, B. (2012). "Bragg structure and the first spectral gap". Applied Mathematics Letters. 25 (11): 1926–1930. doi:10.1016/j.aml.2012.03.002.
    [35] Sheppard, C.J.R. (1995). "Approximate calculation of the reflection coefficient from a stratified medium". doi:10.1088/0963-9659/4/5/018.
    [36] M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 2007, 76, 165415.
    [37] P. Yeh, Optical Waves in Layered Media, Wiley, New York, 1988.
    [38] E.D. Preface.,Palik, In Handbook of Optical Constants of Solids; Academic Press: Burlington, 1997; pp xvii– xviii.

    無法下載圖示 本全文未授權公開
    QR CODE