研究生: |
曾竣瑋 Tseng, Jun-Wei |
---|---|
論文名稱: |
運動前攝取葡萄糖對腦源性神經營養因子及認知功能的影響 Effects of Glucose Ingestion Before Exercise on Brain-Derived Neurotrophic Factor and Cognition |
指導教授: |
王鶴森
Wang, Ho-Seng |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 血糖 、酮體 、能量代謝 、有氧運動 |
英文關鍵詞: | blood glucose, ketone bodies, energy metabolism, aerobic exercise |
DOI URL: | http://doi.org/10.6345/NTNU202100300 |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去的研究發現,腦源性神經營養因子(brain derived neurotrophic factor, BDNF) 可提高神經可塑性,進而提升認知功能。安靜時,體內BDNF濃度與血糖值呈現負相關,而單次有氧運動能提升BDNF生成。在運動前,較低水平的血糖值能否對運動後有更高的BDNF及認知功能的效益仍然未知。目的:探討運動前攝入葡萄糖是否會對運動提升BDNF及認知功能造成影響。方法:招募12位男大學生,採平衡次序設計,分別攝取75克 (75T)、25克 (25T)葡萄糖以及安慰劑 (PT) 溶液後進行30分鐘中等強度跑步運動,並於攝取溶液前、運動前、運動後及運動後30分鐘採血;於運動前、後進行Stroop認知測驗,探討三種處理下,血糖、酮體、BDNF、一氧化氮與認知功能之變化。結果:運動前75T與25T血糖顯著提升,而運動後則明顯下降。三種處理在運動前、後的酮體皆無顯著差異,但PT在運動後30分鐘顯著高於75T與25T。認知測驗部分,PT處理的運動前衝突情境反應時間顯著快於75T與25T (PT vs. 25T vs. 75T:642.82±105.44 vs. 664.14±80.96 vs. 666.78±102.62 ms)。運動後顯著提升一致及衝突兩種情境的反應時間(一致情境運動前 vs. 運動後:583.46±77.04 vs. 565.20±69.85 ms;衝突情境運動前 vs. 運動後:657.92±96.34 vs. 626.83±98.07 ms)。三種處理在運動後一氧化氮與BDNF濃度皆顯著提升。結論:本研究發現立即攝取25至75克的葡萄糖會降低認知功能,而運動能抵銷攝入葡萄糖對認知功能的負面影響。
The previous studies have shown that brain derived neurotrophic factor (BDNF) is effective in increasing the neuroplasticity and enhancing cognition. BDNF and blood glucose are negatively correlated under resting status; acute aerobic exercise increase BDNF. Whether exercise with fasting blood glucose enhance BDNF more still remains unknown. The purpose: This study aims to investigate whether glucose intake before exercise affects the effects of exercise on BDNF and cognition. Method: This study recruited 12 male college students and adopted a counterbalance design: taking 75g(75T), 25g(25T) glucose and placebo (PT) solution and then performing 30 minutes moderate-intensity running. Blood was collected and cognitive test was performed before and after exercise to explore the changes in blood glucose, ketones, BDNF, nitric oxide(NO) and cognition under the three treatments. Results: 75T and 25T blood glucose increased before exercise, but decreased after exercise. In the ketone bodies, PT was higher than 75T and 25T at 30 minutes after exercise. In the cognition, PT had significantly faster reaction times than 75T and 25T on incongruent condition before exercise (PT vs. 25T vs. 75T:642.82±105.44 vs. 664.14±80.96 vs. 666.78±102.62 ms). Exercise improve reaction times on both congruent and incongruent condition (pre vs. post exercise on congruent: 583.46±77.04 vs. 565.20±69.85 ms; pre vs. post exercise on incongruent: 657.92±96.34 vs. 626.83±98.07 ms). NO and BDNF increased after the three treatments. Conclusion: This study found that taking 25 to 75 grams of glucose may reduce cognition, but exercise may countervail reduced cognitive function caused by glucose intake.
Babaei, P., Damirchi, A., Mehdipoor, M., & Tehrani, B. S. (2014). Long term habitual exercise is associated with lower resting level of serum BDNF. Neuroscience Letters, 566, 304-308. doi:10.1016/j.neulet.2014.02.011
Bachman, J. L., Deitrick, R. W., & Hillman, A. R. (2016). Exercising in the fasted state reduced 24-hour energy intake in active male adults. Journal of Nutrition and Metabolism, 2016. doi:10.1155/2016/1984198
Banoujaafar, H., Monnier, A., Pernet, N., Quirie, A., Garnier, P., Prigent-Tessier, A., & Marie, C. (2016). Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. European Journal of Neuroscience, 44(5), 2226-2235. doi:10.1111/ejn.13301
Bojsen-Moller, E., Ekblom, M. M., Tarassova, O., Dunstan, D. W., & Ekblom, O. (2020). The effect of breaking up prolonged sitting on paired associative stimulation-induced plasticity. Experimental Brain Research, 238(11), 2497-2506. doi:10.1007/s00221-020-05866-z
Bos, I., Jacobs, L., Nawrot, T. S., de Geus, B., Torfs, R., Int Panis, L., . . . Meeusen, R. (2011). No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neuroscience Letters, 500(2), 129-132. doi:10.1016/j.neulet.2011.06.019
Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432(7015), 345-352. doi:10.1038/nature03052
Brunelli, A., Dimauro, I., Sgro, P., Emerenziani, G. P., Magi, F., Baldari, C., . . . Caporossi, D. (2012). Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Medicine & Science in Sports & Exercise, 44(10), 1871-1880. doi:10.1249/MSS.0b013e31825ab69b
Burkhalter, J., Fiumelli, H., Allaman, I., Chatton, J. Y., & Martin, J. L. (2003). Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. Journal of Neuroscience, 23(23), 8212-8820. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12967982
Carter, S. E., Draijer, R., Holder, S. M., Brown, L., Thijssen, D. H. J., & Hopkins, N. D. (2018). Regular walking breaks prevent the decline in cerebral blood flow associated with prolonged sitting. Journal of Applied Physiology, 125(3), 790-798. doi:10.1152/japplphysiol.00310.2018
Castellano, V., & White, L. J. (2008). Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. Journal of the Neurological Sciences, 269(1-2), 85-91. doi:10.1016/j.jns.2007.12.030
Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., Vanpatter, M., . . . Kramer, A. F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Reserch, 1358, 172-183. doi:10.1016/j.brainres.2010.08.049
Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the International Neuropsychological Society, 17, 1-11. doi:10.1017/s1355617711000567
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300. doi:10.1111/psyp.12784
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101. doi:10.1016/j.brainres.2012.02.068
Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., . . . Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology-London, 586(23), 5717-5725. doi:10.1113/jphysiol.2008.159905
Cho, H. C., Kim, J., Kim, S., Son, Y. H., Lee, N., & Jung, S. H. (2012). The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO(2)max performance in healthy college men. Neuroscience Letters, 519(1), 78-83. doi:10.1016/j.neulet.2012.05.025
Church, D. D., Hoffman, J. R., Mangine, G. T., Jajtner, A. R., Townsend, J. R., Beyer, K. S., . . . Stout, J. R. (2016). Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. Journal of Applied Physiology, 121(1), 123-128. doi:10.1152/japplphysiol.00233.2016
Coelho, F. G., Vital, T. M., Stein, A. M., Arantes, F. J., Rueda, A. V., Camarini, R., . . . Santos-Galduroz, R. F. (2014). Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. Journal of Alzheimer's Disease, 39(2), 401-408. doi:10.3233/JAD-131073
Correia, P. R., Pansani, A., Machado, F., Andrade, M., Silva, A. C., Scorza, F. A., . . . Arida, R. M. (2010). Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics, 65(11), 1123-1126. doi:10.1590/s1807-59322010001100012
Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464-472. doi:10.1016/j.tins.2007.06.011
de Sousa Fernandes, M. S., Ordônio, T. F., Santos, G. C. J., Santos, L. E. R., Calazans, C. T., Gomes, D. A., . . . Hess, G. (2020). Effects of Physical Exercise on Neuroplasticity and Brain Function: A Systematic Review in Human and Animal Studies. Neural Plasticity, 2020, 1-21. doi:10.1155/2020/8856621
Dinoff, A., Herrmann, N., Swardfager, W., & Lanctot, K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. European Journal of Neuroscience, 46(1), 1635-1646. doi:10.1111/ejn.13603
Dishman, R. K., Berthoud, H. R., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R., . . . Zigmond, M. J. (2006). Neurobiology of exercise. Obesity, 14(3), 345-356. doi:10.1038/oby.2006.46
Donnelly, J. E., Greene, J. L., Gibson, C. A., Smith, B. K., Washburn, R. A., Sullivan, D. K., . . . Williams, S. L. (2009). Physical activity across the curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Preventive Medicine, 49(4), 336-341. doi:10.1016/j.ypmed.2009.07.022
Duman, R. S., Deyama, S., & Fogaca, M. V. (2019). Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. European Journal of Neuroscience. doi:10.1111/ejn.14630
Edinburgh, R. M., Hengist, A., Smith, H. A., Travers, R. L., Betts, J. A., Thompson, D., . . . Gonzalez, J. T. (2019). Skipping breakfast before exercise creates a more negative 24-hour energy balance: A randomized controlled trial in healthy physically active young men. The Journal of Nutrition, 149(8), 1326-1334. doi:10.1093/jn/nxz018
Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Heo, S., McLaren, M., . . . Kramer, A. F. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. Journal of Neuroscience, 30(15), 5368-5375. doi:10.1523/JNEUROSCI.6251-09.2010
Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., . . . Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19(10), 1030-1039. doi:10.1002/hipo.20547
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., . . . Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022. doi:10.1073/pnas.1015950108
Evans, M., Cogan, K. E., & Egan, B. (2017). Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. The Journal of Physiology, 595(9), 2857-2871. doi:10.1113/JP273185
Eyileten, C., Kaplon-Cieslicka, A., Mirowska-Guzel, D., Malek, L., & Postula, M. (2017). Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2 diabetes mellitus. Journal of Diabetes Research, 2017, 2823671. doi:10.1155/2017/2823671
Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4), 728-734. doi:10.1249/mss.0b013e31802f04c7
Fulgenzi, G., Hong, Z., Tomassoni-Ardori, F., Barella, L. F., Becker, J., Barrick, C., . . . Tessarollo, L. (2020). Novel metabolic role for BDNF in pancreatic beta-cell insulin secretion. Nature Communications, 11(1), 1-18. doi:10.1038/s41467-020-15833-5
Gilder, M., Ramsbottom, R., Currie, J., Sheridan, B., & Nevill, A. M. (2014). Effect of fat free mass on serum and plasma BDNF concentrations during exercise and recovery in healthy young men. Neuroscience Letters, 560, 137-141. doi:10.1016/j.neulet.2013.12.034
Ginieis, R., Franz, E. A., Oey, I., & Peng, M. (2018). The "sweet" effect: Comparative assessments of dietary sugars on cognitive performance. Physiology & Behavior, 184, 242-247. doi:10.1016/j.physbeh.2017.12.010
Goekint, M., De Pauw, K., Roelands, B., Njemini, R., Bautmans, I., Mets, T., & Meeusen, R. (2010). Strength training does not influence serum brain-derived neurotrophic factor. European Journal of Applied Physiology, 110(2), 285-293. doi:10.1007/s00421-010-1461-3
Goekint, M., Heyman, E., Roelands, B., Njemini, R., Bautmans, I., Mets, T., & Meeusen, R. (2008). No influence of noradrenaline manipulation on acute exercise-induced increase of brain-derived neurotrophic factor. Science in Sports and Exercise, 40(11), 1990-1996. doi:10.1249/MSS.0b013e31817eee85
Goekint, M., Roelands, B., Heyman, E., Njemini, R., & Meeusen, R. (2011). Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neuroscience Letters, 494(2), 150-154. doi:10.1016/j.neulet.2011.03.001
Gold, S. M., Schulz, K.-H., Hartmann, S., Mladek, M., Lang, U. E., Hellweg, R., . . . Heesen, C. (2003). Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. Journal of Neuroimmunology, 138(1-2), 99-105. doi:10.1016/s0165-5728(03)00121-8
Griffin, E. W., Mullally, S., Foley, C., Warmington, S. A., O'Mara, S. M., & Kelly, A. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Psysiology & Behavior, 104(5), 934-941. doi:10.1016/j.physbeh.2011.06.005
Gusdon, A. M., Callio, J., Distefano, G., O'Doherty, R. M., Goodpaster, B. H., Coen, P. M., & Chu, C. T. (2017). Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Experimental Gerontology, 90, 1-13. doi:10.1016/j.exger.2017.01.013
Gustafsson, G., Lira, C. M., Johansson, J., Wisen, A., Wohlfart, B., Ekman, R., & Westrin, A. (2009). The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder. Psychiatry Research, 169(3), 244-248. doi:10.1016/j.psychres.2008.06.030
Gyorkos, A., Baker, M. H., Miutz, L. N., Lown, D. A., Jones, M. A., & Houghton-Rahrig, L. D. (2019). Carbohydrate-restricted diet and exercise increase brain-derived neurotrophic factor and cognitive function: A randomized crossover trial. Cureus, 11(9), e5604. doi:10.7759/cureus.5604
Hanyu, O., Yamatani, K., Ikarashi, T., Soda, S., Maruyama, S., Kamimura, T., . . . Aizawa, Y. (2003). Brain-derived neurotrophic factor modulates glucagon secretion from pancreatic alpha cells: its contribution to glucose metabolism. Diabetes, Obesity and Metabolism, 5(1), 27-37. doi:10.1046/j.1463-1326.2003.00238.x
Hernandez-Baltazar, D., Nadella, R., Cibrian-Llanderal, T., Puga-Olguín, A., Barrientos-Bonilla, A. A., Zavala-Flores, L. M., . . . Rembao-Bojorquez, J. D. (2018). The causative and curative roles of brain-derived neurotrophic factor in Parkinson’s disease. In Parkinson's Disease and Beyond-A Neurocognitive Approach: IntechOpen.
Heyman, E., Gamelin, F. X., Goekint, M., Piscitelli, F., Roelands, B., Leclair, E., . . . Meeusen, R. (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology, 37(6), 844-851. doi:10.1016/j.psyneuen.2011.09.017
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58-65. doi:10.1038/nrn2298
Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054. doi:10.1016/j.neuroscience.2009.01.057
Hu, E., Du, H., Zhu, X., Wang, L., Shang, S., Wu, X., . . . Lu, X. (2018). Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply. Neuroscience, 386, 315-325. doi:10.1016/j.neuroscience.2018.06.036
Hung, C. L., Tseng, J. W., Chao, H. H., Hung, T. M., & Wang, H. S. (2018). Effect of acute exercise mode on serum brain-derived neurotrophic factor (BDNF) and task switching performance. Journal of Clinical Medicine, 7(10). doi:10.3390/jcm7100301
Ivy, J. L. (1997). Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports Medicine, 24(5), 321-336. doi:10.2165/00007256-199724050-00004
Karpova, N. N. (2014). Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology, 76, 709-718. doi:10.1016/j.neuropharm.2013.04.002
Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Medicine, 40(9), 765-801. doi:10.2165/11534530-000000000-00000
Kobayashi, R., Sato, K., Sakazaki, M., Nagai, Y., Iwanuma, S., Ohashi, N., & Hashiguchi, T. (2019). Acute effects of difference in glucose intake on arterial stiffness in healthy subjects. Cardiology Journal. doi:10.5603/CJ.a2019.0108
Krabbe, K. S., Nielsen, A. R., Krogh-Madsen, R., Plomgaard, P., Rasmussen, P., Erikstrup, C., . . . Pedersen, B. K. (2007). Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia, 50(2), 431-438. doi:10.1007/s00125-006-0537-4
Kristjansson, A. L., Sigfusdottir, I. D., & Allegrante, J. P. (2010). Health behavior and academic achievement among adolescents: the relative contribution of dietary habits, physical activity, body mass index, and self-esteem. Health Education & Behavior, 37(1), 51-64. doi:10.1177/1090198107313481
Laske, C., Banschbach, S., Stransky, E., Bosch, S., Straten, G., Machann, J., . . . Eschweiler, G. W. (2010). Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. International Journal of Neuropsychopharmacology, 13(5), 595-602. doi:10.1017/S1461145709991234
Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W., & van Praag, H. (2010). When neurogenesis encounters aging and disease. Trends in Neurosciences, 33(12), 569-579. doi:10.1016/j.tins.2010.09.003
Lewin, G. R., & Barde, Y. A. (1996). Physiology of the neurotrophins. Annual Review of Neuroscience, 19, 289-317. doi:10.1146/annurev.ne.19.030196.001445
Ma, Q. (2008). Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neuroscience Bulletin, 24(4), 265-270. doi:10.1007/s12264-008-0402-1
Marks, B. L., Katz, L. M., Styner, M., & Smith, J. K. (2011). Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults. British Journal of Sports Medicine, 45(15), 1208-1215. doi:10.1136/bjsm.2009.068114
Marosi, K., & Mattson, M. P. (2014). BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology & Metabolism, 25(2), 89-98. doi:10.1016/j.tem.2013.10.006
Matoulek, M., Svobodova, S., Vetrovska, R., Stranska, Z., & Svacina, S. (2014). Post-exercise changes of beta hydroxybutyrate as a predictor of weight changes. Physiological Research, 63(l 2), 321-325. doi:10.33549/physiolres.932815
Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 27(10), 589-594. doi:10.1016/j.tins.2004.08.001
McAuley, E., Kramer, A. F., & Colcombe, S. J. (2004). Cardiovascular fitness and neurocognitive function in older adults: A brief review. Brain, Behavior, and Immunity, 18(3), 214-220. doi:10.1016/j.bbi.2003.12.007
McDonnell, M. N., Buckley, J. D., Opie, G. M., Ridding, M. C., & Semmler, J. G. (2013). A single bout of aerobic exercise promotes motor cortical neuroplasticity. Journal of Applied Physiology, 114(9), 1174-1182. doi:10.1152/japplphysiol.01378.2012
McMiken, D. F., & Daniels, J. T. (1976). Aerobic requirements and maximum aerobic power in treadmill and track running. Medicine and Science in Sports, 8(1), 14-17. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1271999
Mehren, A., Diaz Luque, C., Brandes, M., Lam, A. P., Thiel, C. M., Philipsen, A., & Ozyurt, J. (2019). Intensity-dependent effects of acute exercise on executive function. Neural Plasticity, 2019, 8608317. doi:10.1155/2019/8608317
Monnier, A., Prigent-Tessier, A., Quirie, A., Bertrand, N., Savary, S., Gondcaille, C., . . . Marie, C. (2017). Brain-derived neurotrophic factor of the cerebral microvasculature: a forgotten and nitric oxide-dependent contributor of brain-derived neurotrophic factor in the brain. Acta Physiologica, 219(4), 790-802. doi:10.1111/apha.12743
Newman, J. C., Covarrubias, A. J., Zhao, M., Yu, X., Gut, P., Ng, C. P., . . . Verdin, E. (2017). Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metabolism, 26(3), 547-557. doi:10.1016/j.cmet.2017.08.004
Nokia, M. S., Lensu, S., Ahtiainen, J. P., Johansson, P. P., Koch, L. G., Britton, S. L., & Kainulainen, H. (2016). Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. The Journal of Physiology, 594(7), 1855-1873. doi:10.1113/JP271552
Noris, M., Morigi, M., Donadelli, R., Aiello, S., Foppolo, M., Todeschini, M., . . . Remuzzi, A. (1995). Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circulation Research, 76(4), 536-543. doi:10.1161/01.res.76.4.536
Page, K. A., Chan, O., Arora, J., Belfort-Deaguiar, R., Dzuira, J., Roehmholdt, B., . . . Sherwin, R. S. (2013). Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. The Journal of the American Medical Association, 309(1), 63-70. doi:10.1001/jama.2012.116975
Pani, G. (2015). Neuroprotective effects of dietary restriction: Evidence and mechanisms. Seminars in Cell & Developmental Biology, 40, 106-114. doi:10.1016/j.semcdb.2015.03.004
Park, C. H., & Kwak, Y. S. (2017). Analysis of energy restriction and physical activity on brain function: the role of ketone body and brain-derived neurotrophic factor. Journal of Exercise Rehabilitation, 13(4), 378-380. doi:10.12965/jer.1735028.514
Pedersen, B. K., & Saltin, B. (2006). Evidence for prescribing exercise as therapy in chronic disease. Scandinavian Journal of Medicine & Science in Sports, 16 Suppl 1, 3-63. doi:10.1111/j.1600-0838.2006.00520.x
Ploughman, M. (2008). Exercise is brain food: The effects of physical activity on cognitive function. Developmental Neurorehabilitation, 11(3), 236-240. doi:10.1080/17518420801997007
Prehn, K., Jumpertz von Schwartzenberg, R., Mai, K., Zeitz, U., Witte, A. V., Hampel, D., . . . Floel, A. (2017). Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex, 27(3), 1765-1778. doi:10.1093/cercor/bhw008
Qi, Y., Wang, S., Luo, Y., Huang, W., Chen, L., Zhang, Y., . . . Tang, Y. (2020). Exercise-induced nitric oxide contributes to spatial memory and hippocampal capillaries in rats. International Journal of Sports Medicine, 41(13), 951-961. doi:10.1055/a-1195-2737
Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., . . . Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062-1069. doi:10.1113/expphysiol.2009.048512
Rojas Vega, S., Abel, T., Lindschulten, R., Hollmann, W., Bloch, W., & Struder, H. K. (2008). Impact of exercise on neuroplasticity-related proteins in spinal cord injured humans. Neuroscience, 153(4), 1064-1070. doi:10.1016/j.neuroscience.2008.03.037
Rojas Vega, S., Struder, H. K., Vera Wahrmann, B., Schmidt, A., Bloch, W., & Hollmann, W. (2006). Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research, 1121(1), 59-65. doi:10.1016/j.brainres.2006.08.105
Ruscheweyh, R., Willemer, C., Kruger, K., Duning, T., Warnecke, T., Sommer, J., . . . Floel, A. (2011). Physical activity and memory functions: An interventional study. Neurobiology of Aging, 32(7), 1304-1319. doi:10.1016/j.neurobiolaging.2009.08.001
Saucedo Marquez, C. M., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of Applied Physiology, 119(12), 1363-1373. doi:10.1152/japplphysiol.00126.2015
Seifert, T., Brassard, P., Wissenberg, M., Rasmussen, P., Nordby, P., Stallknecht, B., . . . Secher, N. H. (2010). Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(2), 372-377. doi:10.1152/ajpregu.00525.2009
Sentija, D., Vucetic, V., & Markovic, G. (2007). Validity of the modified Conconi running test. International Journal of Sports Medicine, 28(12), 1006-1011. doi:10.1055/s-2007-965071
Sleiman, S. F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., . . . Chao, M. V. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. Elife, 5. doi:10.7554/eLife.15092
Strohle, A., Stoy, M., Graetz, B., Scheel, M., Wittmann, A., Gallinat, J., . . . Hellweg, R. (2010). Acute exercise ameliorates reduced brain-derived neurotrophic factor in patients with panic disorder. Psychoneuroendocrinology, 35(3), 364-368. doi:10.1016/j.psyneuen.2009.07.013
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156. doi:10.1016/s0735-1097(00)01054-8
Tang, S. W., Chu, E., Hui, T., Helmeste, D., & Law, C. (2008). Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience Letters, 431(1), 62-65. doi:10.1016/j.neulet.2007.11.019
Toriya, M., Maekawa, F., Maejima, Y., Onaka, T., Fujiwara, K., Nakagawa, T., . . . Yada, T. (2010). Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 22(9), 987-995. doi:10.1111/j.1365-2826.2010.02039.x
Vandenberghe, C., Castellano, C. A., Maltais, M., Fortier, M., St-Pierre, V., Dionne, I. J., & Cunnane, S. C. (2019). A short-term intervention combining aerobic exercise with medium-chain triglycerides (MCT) is more ketogenic than either MCT or aerobic exercise alone: a comparison of normoglycemic and prediabetic older women. Applied Physiology, Nutrition, and Metabolism, 44(1), 66-73. doi:10.1139/apnm-2018-0367
Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the "sit": How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84(4), 699-715. doi:10.1002/jnr.20979
Vega, S. R., Kleinert, J., Sulprizio, M., Hollmann, W., Bloch, W., & Struder, H. K. (2011). Responses of serum neurotrophic factors to exercise in pregnant and postpartum women. Psychoneuroendocrinology, 36(2), 220-227. doi:10.1016/j.psyneuen.2010.07.012
Walsh, J. J., Bentley, R. F., Gurd, B. J., & Tschakovsky, M. E. (2017). Short-duration maximal and long-duration submaximal effort forearm exercise achieve elevations in serum brain-derived neurotrophic factor. Frontiers in Physiology, 8, 746. doi:10.3389/fphys.2017.00746
Walsh, J. J., & Tschakovsky, M. E. (2018). Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition, and Metabolism, 43(11), 1095-1104. doi:10.1139/apnm-2018-0192
Wang, C., Bomberg, E., Billington, C. J., Levine, A. S., & Kotz, C. M. (2010). Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Research, 1336, 66-77. doi:10.1016/j.brainres.2010.04.013
Wheeler, M. J., Dempsey, P. C., Grace, M. S., Ellis, K. A., Gardiner, P. A., Green, D. J., & Dunstan, D. W. (2017). Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 3(3), 291-300. doi:10.1016/j.trci.2017.04.001
Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., . . . Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597-609. doi:10.1016/j.nlm.2006.11.003
Yamanaka, M., Itakura, Y., Tsuchida, A., Nakagawa, T., Noguchi, H., & Taiji, M. (2007). Comparison of the antidiabetic effects of brain-derived neurotrophic factor and thiazolidinediones in obese diabetic mice. Diabetes, Obesity and Metabolism, 9(6), 879-888. doi:10.1111/j.1463-1326.2006.00675.x
Yarrow, J. F., White, L. J., McCoy, S. C., & Borst, S. E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience Letters, 479(2), 161-165. doi:10.1016/j.neulet.2010.05.058
Zanchi, D., Meyer-Gerspach, A. C., Schmidt, A., Suenderhauf, C., Depoorter, A., Drewe, J., . . . Borgwardt, S. (2018). Acute effects of glucose and fructose administration on the neural correlates of cognitive functioning in healthy subjects: a pilot study. Front Psychiatry, 9, 71. doi:10.3389/fpsyt.2018.00071
Zoladz, J. A., Pilc, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J., & Duda, K. (2008). Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. Journal of Physiology and Pharmacology, 59 Suppl 7, 119-132. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19258661