研究生: |
周雨駿 |
---|---|
論文名稱: |
釕金屬錯合物與 DNA 結合之序列選擇性探討 |
指導教授: | 黃文彰 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
論文頁數: | 127 |
中文關鍵詞: | 去氧核醣核酸 、钌金屬錯合物 |
論文種類: | 學術論文 |
相關次數: | 點閱:205 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係探究於 [Ru(bpy)2(dppz)]2+ 及其衍生物 complexs 對特定 AT-rich與 GC-rich DNA 序列之鏡像選擇性與結合性之研究。前人研究指出 [Ru(bpy)2(dppz)]2+ (dppz = dipyrido [3,2-a:2’,3’-c]phenazine) 是個有名的 “light switch” 分子,因為於非質子溶劑中,經照光後可以發出磷光,但是於質子溶劑水溶液中,磷光會被 H+ 給 quench 掉;且還可經由氧化電子傳遞,作為切斷特定 DNA 序列的試劑,此類 complexes中的 dppz ligand,能夠與 DNA 的鹼基產生 π stacking 而插入於 DNA 鹼基對之間,遮蔽掉溶劑中質子與 dppz ligand 上的 N 作用的可能性,於照光後仍可發出磷光。在本實驗中,我們還測試了另三個衍生物[Ru(dmbpy)2(dppz)]2+、[Ru(Cl2bpy)2(dppz)]2+ 和 [Ru(dCOOHbpy)2(dppz)]2+ complexes。在本實驗中我們以上述 Ru complexes 測試了四條雙股右旋且具迴文對稱的 octamers DNA 序列 (d[CGCATGCG])2、(d[CGCTAGCG])2、(d[TATGCATA])2 和 (d[TATCGATA])2。利用 UV/Vis 變溫吸收光譜、UV/Vis 的滴定、circular dichroism (CD) 變溫吸收光譜和 equilibrium dialysis 實驗,來推論出各別 Ru complexes所偏好的 DNA 序列。實驗結果顯示,我們在 [Ru(bpy)2(dppz)]2+、[Ru(dmbpy)2(dppz)]2+ 和 [Ru(Cl2bpy)2(dppz)]2+ 這三者皆可觀察到,其中 [Ru(dmbpy)2(dppz)]2+ 和 [Ru(Cl2bpy)2(dppz)]2+ 最為明顯強烈。且傾向對 AT-rich 的 DNA 序列作結合。然而 DNA 對 [Ru(bpy)2(dppz)]2+ 兩種 enantiomers 的區分能力不是很好,認為應該是對兩種 enantiomers 的結合能力都不差,卻少了專一性。而 [Ru(dCOOHbpy)2(dppz)]2+ 卻是幾乎沒有結合與插入 DNA 鹼基對中的能力。我們也觀察到了各 complexes 對於 DNA 中 purine 和 pyrimidine 彼此交錯排列的序列,有著較強的結合能力,例如 [Ru(bpy)2(dppz)]2+ 是對 (d[CGCATGCG])2,[Ru(dmbpy)2(dppz)]2+ 和 [Ru(Cl2bpy)2(dppz)]2+ 則是對 (d[TATGCATA])2,而 [Ru(dCOOHbpy)2(dppz)]2+ 因結合能力低無能判讀其序列之選擇性。推論於 ancillary ligand 上修飾推拉電子的取代基,是可以有效改善其 enantioselectivity 和與 DNA 結合的能力,且取代基大小比推拉電子性更強烈相關。未來可以以此為基礎,去設計更具專一性和結合能力的 DNA probes 或是 DNA 切割試劑。
Pyle, A. M.; Barton, J. K. (1990) Progress in Inorganic Chemistry: Bioinorganic Chemistry; Lippard, S. J., Ed.; John Wiley & Sons: New York, 38, 413.
Nordén, B.; Lincoln, P.; Akerman, B.; Tuite, E., (1996) Metal Ions in Biological Systems Sigel, A.; Sigel, H., Ed.; Dekker: New York, 33, 177-252.
Erkkila, K. E.; Odom, D. T.; Barton, J. K. (1999) Recognition and reaction of metallointercalators with DNA. Chem. Rev. 99, 2777-2795.
Metcalfe, C.; Thomas, J. A. (2003) Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev. 32, 215-224.
Ji, L. N.; Zou, X. H.; Liu, J. G. (2001) Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA. Coord. Chem. Rev. 216-217, 513-536.
Xiong, Y.; Ji, L. N. (1999) Synthesis, DNA-binding and DNA-mediated luminescence quenching of Ru(II) polypyridine complexes. Coord. Chem. Rev. 185-186, 711-733.
Jennette, K. W.; Lippard, S. J.; Vassiliades, G. A.; Baner, W. R. (1974) Metallointercalation reagents. 2-Hydroxyethanethiolato (2,2',2''}-terpyridine) platinum(II) monocation binds strongly to DNA by intercalation. Proc. Natl. Sci. U.S.A. 71, 3839-3843.
Komeda, S.; Lutz, M.; Spek, A. L.; Chikuma, M.; Reedijk, J. (2000) New antitumor-active azole-bridged dinuclear platinum(II) complexes: Synthesis, characterization, crystal structures, and cytotoxic studies. Inorg. Chem. 39, 4230-4236.
Sitlani, A.; Long, E. C.; Pyle, A. M. (1992) DNA photocleavage by phenanthrenequinone diimine complexes of rhodium(III): Shape-selective recognition and reaction. J. Am. Chem. Soc. 114, 2303-2312.
Rehmann, J. P.; Barton, J. K. (1990) 1H NMR studies of tris(phenanthroline) metal complexes bound to oligonucleotides: Structural characterizations via selective paramagnetic Relaxation. Biochemistry 29, 1710-1717.
Bhattacharya, P. K.; Lawson, H. J.; Barton, J. K. (2003) 1H NMR studies of nickel(II) complexes bound to oligonucleotides: A novel technique for distinguishing the binding locations of metal complexes in DNA. Inorg. Chem. 42, 8811-8817.
Kim, H. K.; Lincoln, P.; Nordén, B.; Tuite, E. (1997) Absence of chiral discrimination in the interaction of tris(diphenylphenanthroline)ruthenium(II) with DNA. Chem. Commun. 24, 2375-2376.
Moucheron, C.; Kirschdemesmaeker, A.; Kelly J. M. (1997) J. Photochem. Photobiol. B 40, 91.
Carlson, D. L.; Huchital, D. H.; Mantilla, E. J.; Sheardy, R. D.; Murphy, W. R. (1993) A new class of DNA metallobinders showing spectator ligand size selectivity: binding of ligand-bridged bimetallic complexes of ruthenium(II) to calf thymus DNA. J. Am. Chem. Soc. 115, 6424-6425.
Friedman, A. E.; Chambron J. C.; Sauvage, J. P.; Turro, N, J.; Barton, J. K. (1990) Molecular ‘‘Light Switch” for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 112, 4960-4962.
Watson, J. D.; Crick, F. H. C. (1953) A structure for deoxyribose nucleic acid. Nature 171, 737-738.
Crick, F. H. C.; Watson, J. D. (1954) The complementary structure of deoxyribose nucleic acid. Proc. Roy. Soc. (London) Ser. A 223, 80-96.
Nelson, D. L.; Cox, M. M. (2004) Lehninger: Principles of Biochemistry (Fourth Ed.) W. H. Freeman and Company, New York. chapter 8.
Haq, I.; Lincoln, P.; Suh, D.; Nordén, B.; Chowdhry, B. Z.; Chaires, J. B. (1995) Interation of Δ- andΛ-[Ru(phen)2(dppz)]2+ with DNA: A Calorimetric and equilibrium binding study. J. Am. Chem. Soc. 117, 4788-4796.
Jenkins, Y.; Friedman, A. E.; Turro, N. J.; Barton, J. K. (1992) Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation. Biochemistry 31, 10809-10816.
Barton, J. K.; Goldberg, J. M.; Kumar, C. V.;Turro, N. J. (1986) Binding modes and base specificity of tris(phenantroline) ruthenium(II) enantiomers with nucleic acids: Tuning the stereoselectivity. J. Am. Chem. Soc. 108, 2081-2088.
Hartshorn, R. M.; Barton, J. K. (1992) Novel dipyridophenazine complexes of ruthenium(II): Exploring luminescent reporters of DNA. J. Am. Chem. Soc. 114, 5919-5925.
Balzani, V.; Barigelletti, F.; De Cola, L. (1990) Metal complexes as light absorption and light emission sensitizers. Top. Curr. Chem. 158, 31-32.
Demas, J. N.; Adamson, A. W. (1971) A New Photosensitizer. Tris(2,2’-bipyridine) ruthenium(II) Chloride. J. Am. Chem. Soc. 93, 1800-1801.
Batista, E. R.; Martin, R. L. (2005) On the excited states involved in the luminescent probe [Ru(bpy)2(dppz)]2+. J. Phys. Chem. A 109, 3128-3133.
Olofsson, J.; Önfelt, B.; Lincoln, P. (2004) Three-state Light switch of [Ru(phen)2dppz]2+: Distinct Excited-state species with two, one, or no hydrogen bonds from solvent. J. Phys. Chem. A 108, 4391-4398.
Delaney, S.; Pascaly, M.; Bhattacharya, P. K.; Han, K.; Barton J. K. (2002) Oxidative damage by ruthenium complexes containing the dipyridophenazine ligand or its derivatives: A focus on intercalation. Inorg. Chem. 41, 1966-1974.
Fasman, G. D. (1975) CRC Handbook of Biochemistry and Molecular Biology (Third Ed.) Chemical Rubber Company Publishing, Cleveland, OH. chapter I 589.
Baleja, J. D.; Pon, R. T.; Sykes, B. D. (1990) Solution structure of phage X half-operator DNA by use of NMR, restrained molecular dynamics, and NOE-basedrefinement. Biochemistry 29, 4828-4839.
Lu, S. H.; Selvi, S.; Fang, J. M. (2007) Ethynyl-linked (pyreno)pyrrole-naphthyridine and aniline-naphthyridine molecules as flurescent sensors of guanine via multiple hydrogen bondings. J. Org. Chem. 72, 117-122.
Lincoln, P.; Nordén, B. (1998) DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and 2,2’-bipyridine ligands studied with linear dichroism spectroscopy. borderline cases of intercalation. J. Phys. Chem. B 102, 9583-9594.
Haq, I.; Lincol, P.; Suh, D.; Nordén, B.; Chowdhry, B. D.; Chaires, J. B. (1995) Interaction of Δ- and Λ-[Ru(phen)2(dppz)]2+ with DNA: A calorimetric and Equilibrium binding study. J. Am. Chem. Soc. 117, 4788-4796.
Dupureur, C. M.; Barton J. K. (1997) Structural studies of Λ- and Δ-[Ru(phen)2(dppz)]2+ bound to d(GTCGAC)2: Characterization of enantioselective intercalation. Inorg. Chem. 36, 33-43.
Holmlin, R. E.; Stemp, E. D. A.; Barton J. K. (1998) [Ru(phen)2(dppz)]2+ luminescence: Dependence on DNA sequences and groove-binding. Inorg. Chem. 37, 29-34.
Uma Maheswari, P.; Rajendiran, V.; Palaniandavar, M.; Parthasarathi, R.; Subramanian, V. (2006) Synthesis, characterization and DNA-binding properties of rac-[Ru(5,6-dmp)2(dppz)]2+ - enantiopreferential DNA binding and co-ligand promoted exciton coupling. J. Inorg. Biochem. 100, 3-17.
Tan, L. F.; Liu, X. H.; Ji, L. N. (2007) Synthesis, DNA-binding and photocleavage studies of ruthenium(II) complex with 2-(3’-phenoxyphenyl)imidazo [4,5-f][1,10]phenanthroline J. Inorg. Biochem. 101, 56-63.
Shi, S.; Liu, J.; Li, J.; Zheng, K. C.; Huang, X. M.; Tan, C. P.; Chen, L. M.; Ji, L. N. (2006) Synthesis, characterization and DNA-binding of novel chiral complexes Δ- and Λ-[Ru(bpy)2L]2+ (L = o-mopip and p-mopip). J. Inorg. Biochem. 100, 385-395.
Hiort, C.; Lincoln, P.; Nordén, B. (1993) DNA binding of Δ- and Λ-[Ru(phen)2(dppz)]2+ J. Am. Chem. Soc. 115, 3448-3454.
Lincoln, P.; Broo, A.; Nordén, B. (1996) Diastereomeric DNA-binding geometries of intercalated ruthenium(II) trischelates probed by linear dichroism: [Ru(phen)2(dppz)]2+ and [Ru(phen)2(bdppz)]2+. J. Am. Chem. Soc. 118, 2644-2653.
Barton, J. K.; Danishefsky, A. T.; Goldberg, J. M. (1984) Tris(phenanthroline)ruthenium( 11): Stereoselectivity in binding to DNA. J. Am. Chem. Soc. 106, 2172-2176
Uma Maheswari, P.; Rajendiran, V.; Stoeckli-Evans, H.; Palaniandavar, M. (2006) Interaction of rac-[Ru(5,6-dmp)3]2+ with DNA: Enantiospectific DNA binding and ligand-promoted exciton coupling. Inorg. Chem. 45, 37-50.
Kang, H.; Chou, P.; Johnson W. C.; Jr.; Weller, D.; Huang, S.; Summerton J. E. (1992) Stacking interactions of ApA analogues with modified backbones. Biopolymers 32, 1351-1363.
Liu, J. G.; Ye, B. H.; Zhang, Q. L.; Zou, X. H.; Zhen, Q. X.; Tian, X.; Ji, L. N. (2000) Enantiomeric ruthenium(II) complexes binding to DNA: binding modes and enantioselectivity. J. Biol. Inorg. Chem. 5, 119-128.
Paiva, A. M.; Sheardy, R. D. (2004) Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers. Biochemistry 43, 14218-14227.
Clark, C. L.; Cecil, P. K.; Singh, D.; Gray, D. M. (1997) CD, absorption and thermodynamic analysis of repeating dinuleotide DNA, RNA and hybrid duplexes [d/r(AC)]12•[d/r(GT/U)]12 and the influence of phosphorothioate substitution. Nucleic Acids Research 25, 4098-4105.
Gray, D. M.; Ratliff, R. L.; Vaughan, M. R. (1992) Circular dichroism spectroscopy of DNA. Methods Enzymology 211, 389-406.
Glick, D. (1985) Methods of Biochemical Analysis 31, 61-163.
Sprecher, C. A.; Baase, W. A.; Johnson, W. C.; Jr. (1979) Conformation and circular dichroism of DNA. Biopolymers 18, 1009-1019.
Ardhammar, M.; Lincoln, P.; Rodger, A.; Nordén, B. (2002) Absolute configuration and electronic state properties of light-switch complex [Ru(phen)2dppz]2+ deduced from oriented circular dichroism in a lamellar liquid crystal host. Chem. Phys. Lett. 354, 44-50.