簡易檢索 / 詳目顯示

研究生: 李克泓
Li, Ke-Hung
論文名稱: 四軸飛行器之實現與控制器設計
Implementation and Controller Design of a Quadcopter
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 四旋翼飛行器姿態控制串級PID控制
英文關鍵詞: Quadcopter, Attitude control, Cascade PID control
DOI URL: http://doi.org/10.6345/NTNU201901091
論文種類: 學術論文
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文製作一四旋翼飛行器與自行設計的實驗平台,利用姿態感測器與超音波感測器的數值來獲取飛行器當前的狀態,並且搭配串級PID控制器使飛行器能夠維持穩定的狀態,並且具有抗干擾的能力。要使飛行器在飛行的過程中保持穩定需要滿足許多條件,包括機架與零件的配重、四顆馬達出力的情形、控制器的好壞等。
    此四旋翼飛行器的控制核心是使用基於ATmega2560的微控制器板, 串級PID控制器實現於微控制器板可完成飛行器自主飛行。利用分配訊號與電力的電路板,將控制器的訊號和電池的電力經由電子調速器穩定的提供給旋翼的四顆馬達。超音波感測器用來偵測飛行器與地面的距離,可以用來輔助定高的功能。飛行器會透過自行設計的實驗平台來檢測姿態的穩定度,記錄數據並且做分析。
    利用MATLAB來進行四旋翼飛行器模擬,建立飛行器的動力學模型來模擬飛行器的運動軌跡,套入不同的參數進行比較,探討參數改變對於穩定度的影響。

    In this paper, a quadcopter and a self-designed experimental platform are implemented. The values of the attitude sensor and the ultrasonic sensor are used to obtain the current state of the quadcopter, and the cascade PID controller is used to maintain the quadcopter in a stable state and against interference. There are many conditions that need to be met to keep the quadcopter stable during flight, including the weight of the frame, the situation of the four motors, and the quality of the controller.
    The control core of this quadcopter is a microcontroller board based on the ATmega2560. The microcontroller board with the cascade PID controller can achieve the quadcopter to fly autonomously. The ultrasonic sensor is used to detect the distance between the quadcopter and the ground, and can be used to assist in the function of fixed height. The stability of the quadcopter is verified through the self-designed experimental platform, and the experimental results are recorded and analyzed.
    The dynamic model of the quadcopter is built to simulate the trajectory of the quadcopter by MATLAB. Different parameters are simulated for comparison, and then the influence of parameter changes on stability is discussed.

    中文摘要 i 英文摘要 ii 誌  謝 iv 表 目 錄 vii 圖 目 錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究方法 3 1.4 論文架構 3 第二章 文獻探討與回顧 5 2.1 四軸飛行器之控制器設計 5 2.2 機械結構調整 6 第三章 四軸飛行器之飛行原理與動力學模型 8 3.1 四軸飛行器之姿態角表示 8 3.1.1 尤拉角 8 3.1.2 方向餘弦矩陣 9 3.1.3 四元數 10 3.2 慣性測量單元 11 3.2.1 陀螺儀 11 3.2.2 加速度計 12 3.3 四軸飛行器動力學模型 12 3.3.1 四軸飛行器的飛行模式 13 3.3.2 飛行姿態與升力之關係 15 3.3.3 四軸飛行器的動態方程式 16 第四章 四軸飛行器之系統架構 20 4.1 硬體架構 20 4.2 軟體架構 35 第五章 實驗結果與討論 42 5.1 實驗功能介紹 42 5.2 各項實驗結果 42 5.2.1 四軸飛行器升力測試 42 5.2.2 四軸飛行器穩定性測試 47 5.2.3 MATLAB模擬 74 第六章 結論與未來展望 83 6.1 結論 83 6.2 未來展望 83 參 考 文 獻 84 自 傳 87 學 術 成 就 88

    Mohammed Abdallah Khodja et al., "Experimental dynamics identification and control of a quadcopter," 2017 6th International Conference on Systems and Control (ICSC), May. 2017.
    Yihao Wei, Chuanjiang Li, Yanchao Sun, and Guangfu Ma, “Backstepping approach for controlling a quadrotor using Barrier Lyapunov Functions,” 2017 36th Chinese Control Conference (CCC), pp. 6235-6239, 2017.
    G. Ganga and M. M. Dharmana, "MPC controller for trajectory tracking control of quadcopter," 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), pp. 1-6, 2017.
    Guilherme V. Raffo, Manuel G. Ortega, and Francisco R. Rubio, “An Underactuated H∞ Control Strategy for a QuadRotor Helicopter,” 2009 European Control Conference (ECC), pp. 3845-3850, 2009.
    A. Das, K. Subbarao, and F. Lewis, "Dynamic inversion with zero-dynamics stabilisation for quadrotor control", IET Control Theory Appl., vol. 3, no. 3, pp. 303-314, 2009.
    K. Alexis, G. Nikolakopoulos, and A. Tzes, "Design and experimental verification of a constrained finite time optimal control scheme for the attitude control of a quadrotor helicopter subject to wind gusts," 2010 IEEE International Conference on Robotics and Automation, pp. 1636-1641, May. 2010.
    Russell Oliver, Sui Yang Khoo, Michael Norton, Scott Adams, and Abbas Kouzani, "Development of a Single Axis Tilting Quadcopter," 2016 IEEE Region 10 Conference (TENCON), pp. 1849-1852, 2016.
    B. Michini, J. Redding, N. Ure, M. Cutler, and J. How, “Design and flight testing of an autonomous variable-pitch quadrotor," 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2978 -2979, May. 2011.
    Ken Shoemake, “Animating rotation with quaternion curves,” ACM SIGGRAPH Computer Graphics, v.19 n.3, pp.245-254, Jul. 1985.
    F. W. Cousins, The Anatomy of the Gyroscope Part III (AGARDograph No.313), North Atlantic Treaty Organization (1988).
    L. R. G. Carrillo, et al., Quad Rotorcraft Control: Vision-Based Hovering and Navigation, Springer, 2012.
    Arshad Mahmood and Yoonsoo Kim, “Leader-following formation and beading control of networked quadcopters,” 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), pp. 919-921, 2014.
    M. A. Lukmana and H. Nurhadi, "Preliminary study on unmanned aerial vehicle (UAV) quadcopter using PID controller," 2015 International Conference on Advanced Mechatronics Intelligent Manufacture and Industrial Automation (ICAMIMIA), pp. 34-37, Oct. 2015.
    K.M., Thu and G.A. Igorevich, “Modeling and design optimization for quadcopter control system using L1 adaptive control,” 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1-5, 2016.
    Z. Mustapa, S. Saat, S. H. Husin, and T. Zaid, “Quadcopter physical parameter identification and altitude system analysis,” 2014 IEEE Symposium on Industrial Electronics & Applications (ISIEA), pp. 130-135, Oct. 2014.
    V. K. Tripathi, L. Behera, and N. Verma, "Design of sliding mode and backstepping controllers for a quadcopter", 2015 39th National Systems Conference (NSC), pp. 1-6, Dec. 2015.
    Manuel A. Vallejo-Alarcón, Martín Velasco-Villa, Rafael Castro-Linares, “Quadcopter Smooth-Saturated Robust Backstepping Control,” 2016 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), Nov. 2016.

    下載圖示
    QR CODE