簡易檢索 / 詳目顯示

研究生: 田秉玉
Tien, Ping-Yu
論文名稱: 臺灣天仙果萃取物對人類腸道上皮細胞株Caco-2鈣離子運輸與糖尿病去卵巢雌性小鼠骨質疏鬆之影響
Effects of Ficus formosana extract on calcium transport into human intestinal epithelial Caco-2 cells and osteoporosis in diabetic ovariectomized female mice
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
丁俞文
Ting, Yu-Wen
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 骨質疏鬆症臺灣天仙果Caco-2細胞糖尿病去卵巢小鼠鈣離子轉運
英文關鍵詞: osteoporosis, Ficus formosana, Caco-2 cells, diabetic ovariectomized female mice, calcium transportation
DOI URL: http://doi.org/10.6345/NTNU202001369
論文種類: 學術論文
相關次數: 點閱:369下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著人口急遽老化,骨質疏鬆症的盛行率也正持續攀升。骨質疏鬆症為臨床常見疾病,不僅會導致骨質流失最終造成患者骨質密度減弱,也會增加骨折的機率。臺灣天仙果 (Ficus formosana Maxim.) 為桑科榕屬植物,是民間普遍使用之食補藥材,具有促進骨骼生長及活血化瘀等功效。本研究利用人類大腸癌細胞株Caco-2細胞transwell seeding單層膜模式評估天仙果莖部熱水萃取物對腸道細胞促鈣轉運之效果,並且以糖尿病去卵巢小鼠動物模式評估其延緩骨質疏鬆之效果及可能機制。首先利用MTT assay測試臺灣天仙果莖部熱水萃取物之毒性,再以Caco-2細胞模擬腸道鈣離子轉運的細胞模式,於transwell上室同時加入鈣離子與天仙果萃取物後,分別在不同時間點抽取下室液,並以 Arsenazo Ⅲ為呈色劑利用分光光譜法測定鈣離子濃度。MTT細胞存活率測試結果顯示,天仙果萃取物於濃度25-500 ppm時對Caco-2細胞並無毒性產生。添加高低濃度(250-50 ppm)的天仙果莖部熱水萃取物處理,可明顯提升Caco-2腸道細胞的鈣離子轉運能力(p<0.05)及加腸道鈣轉運相關蛋白質Claudin 2、Claudin 12、TRPV6、PMCA1和CaBP-9k表現量(p<0.05),且也增加與維生素D調控鈣離子途徑相關蛋白VDR之表現與抑制CYP24A1降解1,25(OH)2D3的能力。在去卵巢之糖尿病雌性小鼠餵食含有高劑量天仙果莖部熱水萃取物之飼料6週後,其血清骨鈣素(Osteocalcin)顯著增加,而骨膠原蛋白碳末端肽鏈(C-telopeptide of type I collagen CTX-1)則顯著降低(p<0.05);另一方面,雖然骨密度(Bone mineral density)各組間無顯著差異,但是臺灣天仙果莖部熱水萃取物處理組之骨小樑的厚度與數目皆較去卵巢糖尿病小鼠為高,顯示具有延緩骨質酥鬆之效果。本研究結果可作為評估臺灣天仙果植株莖部開發骨骼保健膳食補充劑或食品時之參考。

Increasing calcium absorption is the most important and well known to prevent and cure osteoporosis in human been. Ficus formosana (FF), belongs to Moraceac Ficus genus, is a perennial evergreen shrub. The Ficus formosana has been used as folk medicine to cure osteoporosis for decades due to its ability on enhancing human bone growth and adjust menstruation ect. This study evaluates the effects of Ficus formosana roots hot water extract (FFE) on calcium absorption in human intestinal epithelial Caco-2 cells and anti-osteoporosis in diabetic ovariectomized female mice. The cell viabilities of Caco-2 cells were measured by MTT assay. The apical side of the transwell insert was used to assess the effect of FFE on calcium transport across Caco-2 monolayers. HBSS buffer was collected from the basolateral side and analyzed by Arsenazo Ⅲ to measure calcium ion concentration. The results show that FFE at the tested ranges of 25-250 ppm exhibited no cellular cytotoxicity in Caco-2 cells. The treatment of FFE revealed a significantly increase the total calcium transported across Caco-2 monolayers. Western blot analysis shows FFE increased Ca2+ absorption-related proteins includes Claudin 2, Claudin 12, TRPV6, PMCA1b and Calbindin-D(9K) in the Caco-2 cells (p<0.05).Also, FFE increased Vitamin D-inducible calcium transport related proteins VDR, and inhibited CYP24A1. In addition, treatment of FFE for 6 weeks significantly increased serum osteocalcin, whereas decrease serum C-terminal telopeptides type I collagen compared with diabetic ovariectomized female mice. Moreover, FFE increased trabecular thickness and numbers in diabetic ovariectomized female mice. The above observations suggest that FFE possesses potential as a material to develop nutraceuticals or dietary supplements on improving bone health.

第一章、前言 1 第二章、文獻回顧 2 第一節、骨頭之結構與生化代謝 2 一、骨骼之組成 2 二、骨質重塑循環 3 第二節、骨質疏鬆症(Osteoporosis) 4 一、骨質疏鬆症定義與流行病學 4 二、骨質疏鬆症之診斷與追蹤 4 三、骨質疏鬆症之風險因子 8 四、骨質疏鬆症之預防 9 第三節、糖尿病與骨質 10 一、 糖尿病定義、流行病學與其合併症 10 二、糖尿病之主要類型 10 三、糖尿病與骨質疏鬆症之關係 11 四、糖尿病患者骨質疏鬆症之治療與預防 13 第四節、人體中鈣質吸收與調節 14 一、鈣對人體之重要性 14 二、鈣吸收之種類與其機制 15 第五節、臺灣天仙果 18 一、臺灣天仙果 18 二、臺灣天仙果之藥理作用 18 第三章、研究動機與目的及實驗架構 19 第一節、研究動機與目的 19 第二節、實驗架構 20 第四章、實驗材料與方法 21 第一節 實驗藥品與儀器 21 一、實驗藥品與試劑 21 二、儀器設備 24 第二節、樣品製備之材料與方法、與總酚、類黃酮類和 Umbelliferone 含量分析 26 一、實驗樣品來源 26 二、實驗方法 26 三、總多酚類含量測定(Total Phenolic Content) 26 四、總類黃酮含量測定(Total Flavonoid Content) 26 三、Umbelliferone 含量分析 27 第三節、細胞實驗之材料與方法 28 一、實驗細胞株 28 二、實驗方法 28 第三節、動物試驗設計 37 一、實驗動物 37 二、實驗動物飼料 37 三、實驗動物誘導與分組 38 四、實驗方法 39 第五章、結果 41 第一節、臺灣天仙果莖部熱水萃取物製備與Umbelliferone含量 41 一、臺灣天仙果莖部熱水萃取物製備 41 二、總多酚類與總類黃酮含量測定 41 三、Umbelliferone含量測定試驗 41 第二節、臺灣天仙果莖部熱水萃取物對Caco-2細胞株存活率與鈣離子轉運之影響 46 一、臺灣天仙果莖部熱水萃取物對Caco-2細胞株存活率之影響 46 二、跨上皮細胞電阻值(Transepithelial electrical resistance, TEER) 47 三、臺灣天仙果莖部熱水萃取物對Caco-2細胞株鈣轉運之影響 48 四、臺灣天仙果莖部熱水萃取物對促進腸道細胞株Caco-2鈣離子轉運作用機制之探討 49 第三節、臺灣天仙果莖部熱水萃取物對糖尿病去卵巢雌性小鼠糖尿病之影響 56 一、體重與飲水、食物攝取量 56 二、血液血糖、胰島素值 58 三、糖尿病相關之血液生化值 58 第四節、臺灣天仙果熱水萃取物對糖尿病去卵巢雌性小鼠骨質疏鬆之影響 61 一、骨質代謝相關之血液生化值 61 二、Micro-CT 分析 64 第六章、討論 69 第一節、臺灣天仙果莖部熱水萃取物對腸道細胞株之鈣吸收之影響與機制探討 69 一、臺灣天仙果莖部熱水萃取物促進腸道細胞株之鈣轉運 69 二、臺灣天仙果莖部熱水萃取物促進腸道細胞株鈣轉運作用機制之探討 69 第二節、臺灣天仙果對去卵巢糖尿病雌鼠之骨質結構與生化代謝指標之探討 71 一、臺灣天仙果對血鈣與血磷之影響 71 二、臺灣天仙果對骨質重塑作用之影響 72 三、臺灣天仙果促進骨質結構之探討 73 第七章、結論 74 參考文獻 75

李昆錚. (2009). 臺灣天仙果之抗氧化活性及其對STZ誘導糖尿病大白鼠之影響. (碩士). 中國醫藥大學, 台中市. Retrieved from https://hdl.handle.net/11296/awr2p2
邱年永,張光雄. (1992). 原色臺灣藥用植物圖鑑. 台灣台北: 南天書局.
高木村. (1987). 台灣藥用植物手冊(3). 台灣台北: 南天書局.
張顧議. (2017). 去卵巢骨鬆鼠使用發酵乳和雙磷酸鹽(alendronate)的協同骨保護作用研究. (碩士). 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/wqm7hk
許雅雯. (2003). 台灣產天仙果莖部細胞毒及化學成分之研究. (碩士). 高雄醫學大學, 高雄市. Retrieved from https://hdl.handle.net/11296/dk53n5
陳枻瑋. (2011). 台灣天仙果分離出成分繖型花內酯抑制蝕骨細胞生成和小鼠骨再吸收. (碩士). 中國醫藥大學, 台中市. Retrieved from https://hdl.handle.net/11296/8rm3j7
劉棠瑞. (1962). 台灣木本植物圖誌(下): 國立台灣大學農學院.
衛生福利部國民健康署, 財團法人國家衛生研究院, & 中華民國骨質疏鬆症學會. (2013). 骨質疏鬆症-臨床治療指引. 衛生福利部國民健康署.
Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants (Basel, Switzerland), 8(4), 96. doi:10.3390/plants8040096
Bhadricha, H., Khatkhatay, M. I., & Desai, M. (2019). Development of an in house ELISA for human intact osteocalcin and its utility in diagnosis and management of osteoporosis. Clinica Chimica Acta, 489, 117-123. doi:https://doi.org/10.1016/j.cca.2018.12.007
Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J., & Müller, R. (2010). Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. Journal of Bone and Mineral Research, 25(7), 1468-1486. doi:10.1002/jbmr.141
Cao, Y., Miao, J., Liu, G., Luo, Z., Xia, Z., Liu, F., Yao, M., Cao, X., Sun, S., Lin, Y., Lan, Y., & Xiao, H. (2017). Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers. J Agric Food Chem, 65(11), 2307-2314. doi:10.1021/acs.jafc.6b05711
Chinoy, M. A., Javed, M. I., Khan, A., & Sadruddin, N. (2011). Alkaline phosphatase as a screening test for osteomalacia. J Ayub Med Coll Abbottabad, 23(1), 23-25.
Choi, K.-C., & Jeung, E.-B. (2008). Molecular mechanism of regulation of the calcium-binding protein calbindin-D9k, and its physiological role(s) in mammals: a review of current research. Journal of cellular and molecular medicine, 12(2), 409-420. doi:10.1111/j.1582-4934.2007.00209.x
Christakos, S., Li, S., De La Cruz, J., Shroyer, N. F., Criss, Z. K., Verzi, M. P., & Fleet, J. C. (2020). Vitamin D and the intestine: Review and update. The Journal of Steroid Biochemistry and Molecular Biology, 196, 105501. doi:https://doi.org/10.1016/j.jsbmb.2019.105501
Chubb, S. A. P. (2012). Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clinical Biochemistry, 45(12), 928-935. doi:https://doi.org/10.1016/j.clinbiochem.2012.03.035
Clark, D. P., & Badea, C. T. (2014). Micro-CT of rodents: state-of-the-art and future perspectives. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB), 30(6), 619-634. doi:10.1016/j.ejmp.2014.05.011
Daengprok, W., Garnjanagoonchorn, W., Naivikul, O., Pornsinlpatip, P., Issigonis, K., & Mine, Y. (2003). Chicken Eggshell Matrix Proteins Enhance Calcium Transport in the Human Intestinal Epithelial Cells, Caco-2. J Agric Food Chem, 51(20), 6056-6061. doi:10.1021/jf034261e
Diaz de Barboza, G., Guizzardi, S., & Tolosa de Talamoni, N. (2015). Molecular aspects of intestinal calcium absorption. World journal of gastroenterology, 21(23), 7142-7154. doi:10.3748/wjg.v21.i23.7142
Diaz de Barboza, G., Guizzardi, S., & Tolosa de Talamoni, N. (2015). Molecular aspects of intestinal calcium absorption. World J Gastroenterol, 21(23), 7142-7154. doi:10.3748/wjg.v21.i23.7142
Dighe, V., & Adhyapak, S. (2011). COMPARISON OF HPLC AND HPTLC TECHNIQUES FOR DETERMINATION OF UMBELLIFERONE FROM DRIED TUBER POWDER OF IPOMOEA MAURITIANA JACQ. International Journal of Pharmaceutical Sciences and Research, 2.
Do, W.-S., Park, J.-K., Park, M.-I., Kim, H.-S., Kim, S.-H., & Lee, D.-H. (2012). Bisphosphonate-induced Severe Hypocalcemia - A Case Report. Journal of bone metabolism, 19(2), 139-145. doi:10.11005/jbm.2012.19.2.139
Espallargues, M., Sampietro-Colom, L., Estrada, M. D., Solà, M., del Río, L., Setoain, J., & Granados, A. (2001). Identifying Bone-Mass-Related Risk Factors for Fracture to Guide Bone Densitometry Measurements: A Systematic Review of the Literature. Osteoporosis International, 12(10), 811-822. doi:10.1007/s001980170031
Fan, Y., Wei, F., Lang, Y., & Liu, Y. (2016). Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporosis International, 27(1), 219-228. doi:10.1007/s00198-015-3279-7
Fleet, J. C., & Schoch, R. D. (2010). Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Critical reviews in clinical laboratory sciences, 47(4), 181-195. doi:10.3109/10408363.2010.536429
Fujita, H., Sugimoto, K., Inatomi, S., Maeda, T., Osanai, M., Uchiyama, Y., Yamamoto, Y., Wada, T., Kojima, T., Yokozaki, H., Yamashita, T., Kato, S., Sawada, N., & Chiba, H. (2008). Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Molecular biology of the cell, 19(5), 1912-1921. doi:10.1091/mbc.e07-09-0973
Günzel, D., & Yu, A. S. L. (2013). Claudins and the modulation of tight junction permeability. Physiological reviews, 93(2), 525-569. doi:10.1152/physrev.00019.2012
Ghayor, C., & Weber, F. E. (2016). Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis. International journal of molecular sciences, 17(9), 1446. Retrieved from https://www.mdpi.com/1422-0067/17/9/1446
Hildebrand, T., & Rüegsegger, P. (1997). A new method for the model-independent assessment of thickness in three-dimensional images. Journal of Microscopy, 185(1), 67-75. doi:10.1046/j.1365-2818.1997.1340694.x
HUI, S. L., EPSTEIN, S., & JOHNSTON, C. C., JR. (1985). A Prospective Study of Bone Mass in Patients with Type I Diabetes*. The Journal of Clinical Endocrinology & Metabolism, 60(1), 74-80. doi:10.1210/jcem-60-1-74
Hung, P. V., & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem, 109(2), 325-331. doi:10.1016/j.foodchem.2007.12.060
Hwang, I., Yang, H., Kang, H.-S., Ahn, C., Hong, E.-J., An, B.-S., & Jeung, E.-B. (2013). Alteration of tight junction gene expression by calcium- and vitamin D-deficient diet in the duodenum of calbindin-null mice. International Journal of Molecular Sciences, 14(11), 22997-23010. doi:10.3390/ijms141122997
Iyer, K. M. (2013). General Principles of Orthopedics and Trauma.
Jara, A., Lee, E., Stauber, D., Moatamed, F., Felsenfeld, A. J., & Kleeman, C. R. (1999). Phosphate depletion in the rat: Effect of bisphosphonates and the calcemic response to PTH. Kidney International, 55(4), 1434-1443. doi:https://doi.org/10.1046/j.1523-1755.1999.00395.x
Jia, M., Nie, Y., Cao, D.-P., Xue, Y.-Y., Wang, J.-S., Zhao, L., Rahman, K., Zhang, Q.-Y., & Qin, L.-P. (2012). Potential Antiosteoporotic Agents from Plants: A Comprehensive Review. Evidence-Based Complementary and Alternative Medicine, 2012, 364604. doi:10.1155/2012/364604
Kellett, G. L. (2011). Alternative perspective on intestinal calcium absorption: proposed complementary actions of Cav1.3 and Trpv6. Nutr Rev, 69(7), 347-370. doi:10.1111/j.1753-4887.2011.00395.x %J Nutrition Reviews
Kim, J., & Mauvais-Jarvis, F. (2016). The combination of conjugated equine estrogens with bazedoxifene prevents streptozotocin-induced diabetes in female mice. Matters, 2(6), e201605000017.
Komori, T. (2020). What is the function of osteocalcin? Journal of Oral Biosciences. doi:https://doi.org/10.1016/j.job.2020.05.004
Lee, G. S., Choi, K. C., & Jeung, E. B. (2006). Glucocorticoids differentially regulate expression of duodenal and renal calbindin-D9k through glucocorticoid receptor-mediated pathway in mouse model. Am J Physiol Endocrinol Metab, 290(2), E299-307. doi:10.1152/ajpendo.00232.2005
Lee, G. S., Lee, K. Y., Choi, K. C., Ryu, Y. H., Paik, S. G., Oh, G. T., & Jeung, E. B. (2007). Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J Bone Miner Res, 22(12), 1968-1978. doi:10.1359/jbmr.070801
Lieben, L., Masuyama, R., Torrekens, S., Van Looveren, R., Schrooten, J., Baatsen, P., Lafage-Proust, M.-H., Dresselaers, T., Feng, J. Q., Bonewald, L. F., Meyer, M. B., Pike, J. W., Bouillon, R., & Carmeliet, G. (2012). Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. The Journal of clinical investigation, 122(5), 1803-1815. doi:10.1172/JCI45890
Liu, J.-M., Rosen, C. J., Ducy, P., Kousteni, S., & Karsenty, G. (2016). Regulation of Glucose Handling by the Skeleton: Insights From Mouse and Human Studies. Diabetes, 65(11), 3225-3232. doi:10.2337/db16-0053
Massé, P. G., Pacifique, M. B., Tranchant, C. C., Arjmandi, B. H., Ericson, K. L., Donovan, S. M., Delvin, E., & Caissie, M. (2010). Bone Metabolic Abnormalities Associated with Well-Controlled Type 1 Diabetes (IDDM) in Young Adult Women: A Disease Complication Often Ignored or Neglected. Journal of the American College of Nutrition, 29(4), 419-429. doi:10.1080/07315724.2010.10719859
McCarthy, A., Molinuevo, M., & Cortizo, A. (2013). AGEs and Bone Ageing in Diabetes Mellitus. Journal of Diabetes and Metabolism, 4. doi:10.4172/2155-6156.1000276
Medicine, I. o. (2011). Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press.
Oršolić, N., Goluža, E., Đikić, D., Lisičić, D., Sašilo, K., Rođak, E., Jeleč, Ž., Lazarus, M. V., & Orct, T. (2014). Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. European Journal of Nutrition, 53(5), 1217-1227. doi:10.1007/s00394-013-0622-7
Papapetrou, P. D. (2009). Bisphosphonate-associated adverse events. Hormones (Athens), 8(2), 96-110. doi:10.14310/horm.2002.1226
Parvaneh, K., Ebrahimi, M., Sabran, M. R., Karimi, G., Hwei, A. N., Abdul-Majeed, S., Ahmad, Z., Ibrahim, Z., & Jamaluddin, R. (2015). Probiotics (Bifidobacterium longum) Increase Bone Mass Density and Upregulate Sparc and Bmp-2 Genes in Rats with Bone Loss Resulting from Ovariectomy. Biomed Res Int, 2015, 897639. doi:10.1155/2015/897639
Peng, J., Hui, K., Hao, C., Peng, Z., Gao, Q. X., Jin, Q., Lei, G., Min, J., Qi, Z., Bo, C., Dong, Q. N., Bing, Z. H., Jia, X. Y., & Fu, D. L. (2016). Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connective Tissue Research, 57(4), 277-289. doi:10.3109/03008207.2016.1171858
Portale, A. A., & Perwad, F. (2009). Calcium and Phosphorus. In E. Avner, W. Harmon, P. Niaudet, & N. Yoshikawa (Eds.), Pediatric Nephrology: Sixth Completely Revised, Updated and Enlarged Edition (pp. 231-265). Berlin, Heidelberg: Springer Berlin Heidelberg.
Romero Barco, C. M., Manrique Arija, S., & Rodríguez Pérez, M. (2012). Biochemical markers in osteoporosis: usefulness in clinical practice. Reumatol Clin, 8(3), 149-152. doi:10.1016/j.reuma.2011.05.010
Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T., Takeuchi, M., & Ochi, H. (1996). Varietal Differences in the Phenolic Content and Superoxide Radical Scavenging Potential of Wines from Different Sources. Journal of Agricultural and Food Chemistry, 44(1), 37-41. doi:10.1021/jf950190a
Schulman, R. C., Weiss, A. J., & Mechanick, J. I. (2011). Nutrition, bone, and aging: an integrative physiology approach. Curr Osteoporos Rep, 9(4), 184-195. doi:10.1007/s11914-011-0079-7
Schwartz, A. V., Ewing, S. K., Porzig, A. M., McCulloch, C. E., Resnick, H. E., Hillier, T. A., Ensrud, K. E., Black, D. M., Nevitt, M. C., Cummings, S. R., & Sellmeyer, D. E. (2013). Diabetes and change in bone mineral density at the hip, calcaneus, spine, and radius in older women. Front Endocrinol (Lausanne), 4, 62. doi:10.3389/fendo.2013.00062
Shen, Y., Jin, L., Xiao, P., Lu, Y., & Bao, J. (2009). Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science, 49(1), 106-111. doi:https://doi.org/10.1016/j.jcs.2008.07.010
Shetty, S., Kapoor, N., Bondu, J. D., Thomas, N., & Paul, T. V. (2016). Bone turnover markers: Emerging tool in the management of osteoporosis. Indian journal of endocrinology and metabolism, 20(6), 846-852. doi:10.4103/2230-8210.192914
Song, L., Bi, Y. N., Zhang, P. Y., Yuan, X. M., Liu, Y., Zhang, Y., Huang, J. Y., & Zhou, K. (2017). Optimization of the Time Window of Interest in Ovariectomized Imprinting Control Region Mice for Antiosteoporosis Research. Biomed Res Int, 2017, 8417814. doi:10.1155/2017/8417814
Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61(5), 928-931. doi:10.1007/BF02542169
Tanaka, K., Yamagata, K., Kubo, S., Nakayamada, S., Sakata, K., Matsui, T., Yamagishi, S. I., Okada, Y., & Tanaka, Y. (2019). Glycolaldehyde-modified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone, 128, 115034. doi:10.1016/j.bone.2019.115034
Torre, E. (2017). Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochemistry reviews : proceedings of the Phytochemical Society of Europe, 16(6), 1183-1226. doi:10.1007/s11101-017-9529-x
Vestergaard, P. (2007). Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporosis International, 18(4), 427-444. doi:10.1007/s00198-006-0253-4
Zhou, Z. L., Deng, Y. F., Tao, Q. S., Hu, Y. F., & Hou, J. F. (2009). Effects of Gushukang, a Chinese herbal medicine, on bone characteristics and osteoporosis in laying hens. Poult Sci, 88(11), 2342-2345. doi:10.3382/ps.2009-00285

無法下載圖示 電子全文延後公開
2025/08/31
QR CODE