研究生: |
洪國恩 Hung Kuo-En |
---|---|
論文名稱: |
藏東東久-米林剪切帶構造演化史之研究 Structural Evolution of the Tungchiu-Milin Shear Zone in Eastern Tibet |
指導教授: |
李通藝
Lee, Tung-Yi 葉孟宛 Yeh, Meng-Wan |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 東喜馬拉雅構造結 、葉理分析 、葉理交軸法 、氬-氬定年法 |
英文關鍵詞: | Eastern Himalaya syntaxis, Foliation analysis, Foliation Intersection Axes (FIAs) Method, 40Ar/39Ar dating |
論文種類: | 學術論文 |
相關次數: | 點閱:211 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
東久-米林剪切帶為東喜馬拉雅構造結之西界斷層,東喜馬拉雅構造結自早新生代印歐板塊碰撞事件以來,一直處於一個地體碰撞樞紐地帶,而地表斷裂與強烈變形作用也深受其影響。前人曾探討此構造結之形成過程與機制,但也都未能全然的了解此地區複雜的地體架構模式。為釐清東喜馬拉雅構造結形成之過程,本研究選定其西界之東久-米林剪切帶,藉由野外調查、顯微構造之葉理分析以及葉理交軸分析,並配合 40Ar/39Ar 定年法來探討此剪切帶構造演化與熱事件過程,以期能更進一步瞭解東喜馬拉雅構造結的形成機制。
初步分析結果顯示此區域構造作用可分為三期塑性變形事件 (D1、D2、D3) 與最後一期的脆性變形事件 (D4):第一期變形作用 (D1) 為早新生代印歐板塊聚合作用而造成平行於剪切帶之同斜褶皺 (Isoclinal fold),褶皺軸面 (S1) 走向北偏東30~50°向西北傾約60~70°,並呈現西北-東南向 bulk shortening,shear sense 顯示出左剪壓縮作用,是為剪切帶主要形成之作用期。第二期變形作用 (D2) 介於早新生代印歐板塊碰撞與 20.1±0.2Ma 之間,主要產生趨水平向偃臥褶皺 (Recumbent fold),褶皺軸面 (S2) 走向為北偏東 20~70°向西北傾約 5~40°,shear sense 顯示出近水平向東南逆衝作用,可能於此時期岩圈在 D1 後因西藏高原增厚並造成重力垮塌之循環作用。第三期變形作用 (D3) 主要產生平行於剪切帶東北-西南走向的葉理 (S3;N23~45°E;NW65~85°),呈高角度向西北傾,shear sense 呈現右剪壓縮之剪動方向,並造成剪切帶在 20.1±0.2~11.4±0.1Ma 由南往北不同時剪動抬升,並認為東南亞早在 20Ma 則開始以東喜馬拉雅構造結順時針旋動。
The Eastern Himalaya syntaxis is the center of current clockwise rotation of surrounding Asia blocks. Previous studies had considered the formation of the Eastern Himalaya syntaxis as an Indian continental wedge jabbing into the Asia plate during the early-Cenozoic India-Eurasia collision. However, other researchers argued that the Eastern Himalaya syntaxis represents a huge antiform complex with rigid high grade metamorphic core. In order to understand the forming mechanism and evolution history of the Eastern Himalaya syntaxis, this thesis reconstructs the structural evolution and thermal history of the Tungchiu-Milin shear zone by field work, micro-structural foliation analysis, matrix Foliation Intersection/Inflection Axes (FIAs) measurement and 40Ar/39Ar dating. The Tungchiu-Milin shear zone is the western boundary of the syntaxes. The structural reconstruction revealed D1 left-lateral transpression and formed the Isoclinal fold (attitude of fold axis plane, NE30~50°;N60~70°), D2 sub-horizontal thrusting from northwestern to southeastern and formed the Recumbent fold (attitude of fold axis plane, NE20~70°;N5~40°), D3 right-lateral transtension and formed the upright fold (attitude of fold axis plane, NE23~45°;N65~85°), the last one D4 due to the last brittle deformation of structure deformation event and showed last left-lateral strike-slip fault and right-lateral strike-slip fault. The geochronology correlation revealed the right-lateral shearing event to be between 20.1±0.2~11.4±0.1 Ma, which is older than that suggested by previous studies. The biotite plateau ages distributed from south to north range from 20.1±0.2Ma to 11.2±0.0Ma with a distinct pattern of younging northward along the shear zone.
丁林和鍾大賚,1999,西藏南迦巴瓦地區高壓麻立岩相變質作用特徵及其構造地質意義: 中國科學, D輯, 29(4), P385~397。
王佩玲及羅清華,1997,氬-氬(40Ar/39Ar)定年法。地質16卷,1-2期,17-45頁。
王佩玲,1998,鉀長石氬40/氬39同位素熱定年學之研究與應用,國立台灣大學地質學研究所 [博士論文],共198頁。
佘寶珠,2003,越南北部紅河剪切帶自中生代以來應變史之探討, 國立臺灣師範大學 [碩士論文],86頁。
青藏高原及鄰區地質圖,中國地質調查局成都地質礦產研究所編制,2004年七月第一版第一次印刷。
林郁伶,2007,變質岩葉理交軸測量方法之建立與改進,大專學生參與專題研究計畫研究成果報告,行政院國家科學委員會,1-38頁。
南迦巴瓦峰地區地質-中國科學院登山科學考察隊,1992,登山科學考察叢書,科學出版社。
張進江, 季建清, 鍾大賚, 丁 林, 何順東,2003,東喜馬拉雅南迦巴瓦構造結的構造格局及形成過程探討: 中國科學, D 輯, 33(4); 373~382。
張雅菁,2004,西藏東久-米林剪切帶活動史之氬氬定年學研究, 碩士論文, 63頁。
Bell, T. H. and A. Forde ., 1995. On the significance of foliation patterns preserved around folds by mineral overgrowth. Tectonophysics 246: 171-181.
Bell, T. H., K. A. Hickey, et al., 1997. Spiral and staircase inclusion trail axes within garnet and staurolite porphyroblasts from the schists of the Bolton Syncline, Connecticut: Timing of porphyroblast growth and the effects of fold development. Journal of Metamorphic Geology 15: 467-478.
Bell, T.H., and Hickey, K.A., 1998, Multiple deformations with successive subvertical and subhorizontal axial planes in the Mount Isa region their impact on geometric development and significance for mineralization and exploration: Economic Geology, v. 93, p. 1369-1389.
Bell, T. H. and M. D. Bruce., 2005. The internal inclusion trail geometries preserved within a first phase of porphyroblast growth. Journal of Structural Geology 28: 236-252.
Burg, J.-P., P. Nievergelt, et al., 1998. The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding. Journal of Southeast Asian Earth Sciences 16(2-3): 239-252.
Burg, J. P. and Y. Podladchikov., 1999. Lithospheric scale folding: numerical modelling and application to the Himalayan syntaxes. International Journal of Earth Sciences 88(2): 190-200.
Ding, L., D. Zhong, et al., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters 192(3): 423-438.
England, P. and G. Houseman., 1986. Finite strain calculations of continental deformation; 2, Comparison with the India-Asia collision zone. Journal of Geophysical Research 91(B3): 3664-3676.
England, P. and G. Houseman., 1989. Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research 94: 17561-17579.
Hayward, N., 1990, Determination of early fold axis orientations in multiply deformed rocks using porphyroblast inclusion trails, Tectonophysics, 179, 353-69.
Hanmer, S., and Passchier, C., 1991, Shear-sense indicators: A review, Geological Survey of Canada, 72 p.
Harris. N., 2007. Channel flow and the Himalayan-Tibetan orogen: a critical review. Journal of the Geological Society, Londom, Vol. 164, 511-523.
Harrison, T. M., W. Chen, et al., 1992. An Early Miocene transition in deformation regime within the Red River Fault zone, Yunnan, and its significance for Indo-Aisan tectonics. Journal of Geophysical Research 97(B5): 7159-7182.
Johnson, S.E., 1999, Near-orthogonal foliation development in orogens: meaningless complexity, or reflection of fundamental dynamic processes?: Journal of Structural Geology, v. 21, p. 1183-1187.
Kapp, P., Yin, A., et al., 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bulletin, v.117, no.7/8,865-878.
Lee, H. Y., Chung, S. L., et al., 2003. Miocene Jiali faulting and its implications for Tibetan tectonic evolution, Earth and Planetary Science Letters 205,185-194.
Liu, C. S., I. L. Huang, et al., 1997. Structural features off southwestern Taiwan. Marine Geology 137(3-4): 305-319.
Liu, Y., Berner, Z., et al., 2006. Carbonate-like dykes from eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust, Journal Asian Earth Science, 26, 105-120.
Liu, Z. X., D. X. Xia, et al., 1998. Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea. Marine Geology 145: 225-253.
Lo, C.-H., Onstott, T.C., Chen, C.-H., and Lee, T., 1994 An assessment of 40Ar/39Ar dating for the wholerock volcanic samples from the Luzon Arc near Taiwan. Chemical Geology, 114, 157-178.
Mitchell, J.G., 1968. The argon-40/argon-39 method for potassium-argon age determination. Geochimica et Cosmochimica Acta, 22, 781-790.
Molnar, P. and P. Tapponnier., 1977. Relation of the tectonics of eastern China to India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics. Geology 5: 212-216.
Seward, D. and Burg, J.P., 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data, Tectonophysics, doi:10.1016 / j.tecto. 2007. 11.057
St-Onge, et al., 2006. Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates. Tectonics, Vol.25, TC4006, doi:10.1029/2005TC001907, 1-22.
Rich, B. H., 2006. Permian bulk shortening in the Narragansett Basin of southeastern New England, USA. Journal of Structural Geology 28: 682-694.
Tapponnier, P., G. Peltzer, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10: 611-616.
Tapponnier, P., Z. Xu, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 23(294): 1671-1677.
Turner, G., 1971. 40Ar/39Ar ages from the lunar maria. Earth and Planetary Science Letters, 10, 227-234.
Wang, Q., Zhang, P.-Z., et al., 2001. Present-day system measurements, Science 294, 574-577.
Wänke, H. and König, H., 1959. Eine neue Methode zure Kalium-Argon-Altersbestimmung und ihre Anwendung auf Steinmeteorite. Z. Naturforsch. 14a, 860-866.
Yeh, M. W., 2003. The Significance and Application of Foliation Intersection / Inflection Axes (FIA) within Porphyroblast : A review. TAO 14: 401-419.
Yin, A., Harrison, T.M., Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth Planet. Sci. 28, 211-280.
York, D. and Berger, G.W., 1970. 40Ar/39Ar age determinations on nepheline and basic whole rocks. Earth and Planetary Science Letters, 7, 333-336.
Zeitler, P. K., P. O. Koons, et al., 2001. Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal- mechanical couplingfacilitated by erosion. Tectonics 20(5): 712-728.
Zhang, P.-Z., Z. Shen, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32(9): 809-812.