研究生: |
黃俊欽 HUANG,JYUN-CIN |
---|---|
論文名稱: |
以極化保持光纖及低雙折射光纖為基礎的掃頻式極化光學同調斷層攝影術 Polarization maintain fiber and low birefringence fiber based swept source polarization sensitive optical coherence tomography |
指導教授: |
郭文娟
Kuo, Wen-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 極化光學同調斷層攝影術 |
英文關鍵詞: | PSOCT |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一套以極化保持光纖及低雙折射光纖為基礎的掃頻式極化光學同調斷層攝影術系統。我們證明了本系統的精確度可與自由光路的架構相比;而樣品端全光纖化,具有緊密及便於攜帶的優點,便於應用在臨床研究上;此外,本系統每一橫向位置只需透過一次軸向量測即可獲得背向散射光強、延遲角、快軸夾角影像,如此可以減少量測時間以及樣品變動的敏感度問題。我們也研究了樣品端光纖的線性及旋轉運動的影響,並證明使用低雙折射光纖的樣品端對於由光纖運動造成相位延遲角的影響並不明顯;然而對於由光纖運動造成快軸夾角的變化在未來應用時仍需做補償。
In this research, a polarization maintain fiber and low birefringence fiber based swept source polarization sensitive optical coherence tomography system is proposed. We demonstrate that this compact and portable OCT system based on an all fiber sample arm, with accuracy comparable to bulk optics systems, which could serve as a technology to realize PS-OCT instrument for clinical applications. Furthermore, the system enables measurement and imaging of backscattered intensity, birefringence, and fast axis angle orientation simultaneously with only one single A-scan per transverse measurement location. This can reduce measurement time and sensitivity to sample movements. We also investigated the effects of sample arm fiber in linear and rotary motion, and demonstrate that by using low birefringence fiber in sample arm, changes in phase retardation angle due to sample fiber motion is not significant. However, changes in fast axis angle due to sample arm fiber motion need to be compensated in the future.
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science, 254(5035), 1178-1181 (1991).
[2] P. A. Flourney, “White-light interferometric thickness gauge ,” Appl. Opt. 11(9), 1907-1915 (1972).
[3] C. K. Hizenberger, “Measurement of Corneal Thickness by Low-Coherence Interferometry,” Appl. Opt. 31(31), 6637-6642 (1992).
[4] J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, ”In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,"s Opt. Lett. 22(18), 1439-1441 (1997).
[5] Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler Tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134-1142 (1999).
[6] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherencetomography,” Science, 276(5321), 2037-2039 (1997).
[7] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopicoptical coherence tomography,” Opt. Lett. 25(2), 111-113 (2000)
[8] C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26(16), 1271-1273 (2001).
[9] M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto. “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. 9(6), 903–908 (1992).
[10] C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Expr. 9(13), 780-790 (2001).
[11] C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), pp.1355–1357 (2000).
[12] D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003).
[13] C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13),1509–1511 (2004).
[14] T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Expr. 12(11), 2377–2386 (2004).
[15] M. K. Al-Qaisi, H. Wang, and T. Akkin, “Measurement of Faraday rotation using phase-sensitive low-coherence interferometry,” Appl. Opt. 48(30), 5829–5833 (2009).
[16] M. K. Al-Qaisi, and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Expr. 16(17), 13032–13041 (2008),
[17] M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Expr. 18(4), 3392-3403 (2010).
[18] K. Schoenenberger, B. W. Colston Jr., D. J. Maitland, L. B. Da Silva, M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitiveoptical coherence tomography,” Appl. Opt. 37(25), 6026-6036 (1998).
[19] Yariv, and P. Yeh, “Optical Waves in Crystals,” (Wiley, New York, 1984)
[20] J. W. Dally and W.F. Riley, ”Exerimental Stress Analysis,” 2nded., M. Hill, New York, (1987).
[21] Y. W. , and C. Q. Xu, “Characterization of spun fibers with millimeter spin periods,” Opt. Expr. 13(10), 3841-3851 (2005).