研究生: |
陳湘燁 Chen, Hsiang-Yeh |
---|---|
論文名稱: |
新型冠狀病毒(COVID-19)流行初期確診率與死亡率的相關因子:以全球空間資料分析 Factors Associated with COVID-19 Case Rate and Mortality in the Early Stage of Pandemic- A Global Spatial Analysis |
指導教授: |
李子奇
Lee, Tzu-Chi |
口試委員: |
謝宗成
Hsieh, Tsung-Cheng 林志榮 Lin, Jr Rung 李子奇 Lee, Tzu-Chi |
口試日期: | 2021/11/26 |
學位類別: |
碩士 Master |
系所名稱: |
健康促進與衛生教育學系健康促進與衛生教育碩士在職專班 Department of Health Promotion and Health Education_Continuing Education Master's Program of Health Promotion and Health Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 新型冠狀病毒 、大流行疾病 、多變數空間自迴歸分析 、確診率 、死亡率 |
英文關鍵詞: | COVID-19, pandemic, spatial autoregression models, case rate, mortality |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202200008 |
論文種類: | 學術論文 |
相關次數: | 點閱:318 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:
新型冠狀病毒 (Coronavirus disease 2019, COVID-19)在2019年12月於中國湖北省發現多起群聚感染,且迅速擴散至全中國並蔓延至其他國家,造成大流行疾病,臺灣在2020年1月21日,出現第1例COVID-19境外移入,COVID-19除了對經濟造成衝擊外,也因各國疫情及病例數與日俱增,讓民眾對於未知的疾病產生恐慌,本研究目的在了解世界各國COVID-19流行初期確診率及死亡率分佈情形及相關因子。
研究方法:
本研究透過世界各國的開放式數據探討眾多與COVID-19確診率及死亡率相關的因子,如:肥胖、高齡化、平均壽命、經濟發展程度、識字率、人口密度、傳染病與慢性病(癌症、心血管疾病、糖尿病、肺結核等的盛行率)、基礎衛生建設涵蓋率、醫療資源(醫師密度、病床密度)。空間統計分析用於探索 COVID-19確診率和死亡率的空間分佈。 本研究按兩個指標日期進行空間統計分析,分別是第一個分析時間點(2020年7月15日,T1)和第二個分析時間點(2020年12月15日,T2)。為了探索相關的因子和結果變項之間的空間關聯,我們進行了不同定義的空間相關矩陣之空間自迴歸分析,包括一階國界相鄰、二階國界相鄰、500公里距離相鄰、1,000 公里距離相鄰和 1,500公里距離相鄰。空間自迴歸分析並考量自變項共線性的問題。
研究結果:
共175個國家的資料納入空間統計分析,以1,500公里距離相鄰為定義,排除部份共線性的自變項後,將剩餘的自變項同時納入多變數空間自迴歸分析顯示,國內生產毛額 (單位:每壹美元,估計係數=0.46,p=0.033)及肥胖率 (單位:每100人,估計係數=0.95, p<0.001)與T1確診率 (每百萬人)有顯著正相關;國內生產毛額 (單位:每壹美元,估計係數=0.43,p=0.029)及肥胖率 (單位:每100人,估計係數=1.02, p<0.001)也與T2確診率(每百萬人)有顯著正相關。
以1,500公里距離相鄰為定義,排除部份共線性的自變項後,將剩餘的自變項同時納入多變數空間自迴歸分析顯示,肥胖率 (單位:每100人,估計係數=0.75,p=0.001)及女性肺癌死亡率 (單位:每十萬人,估計係數=0.65, p=0.047)與T1死亡率 (每百萬人)有顯著正相關;僅肥胖率 (單位:每100人,估計係數=0.93, p<0.001)與T2死亡率 (每百萬人)有顯著正相關。
結論:
本研究結果與過去研究相符。在控制潛在的干擾變項後,研究結果顯示肥胖率與COVID-19確診率及死亡率有明顯的正相關,其次經濟與慢性疾病也是確診率的重要相關因子。
關鍵字:新型冠狀病毒、大流行疾病、多變數空間自迴歸分析、確診率、死亡率
Background:
Coronavirus disease 2019 (COVID-19) was discovered in China in December 2019, and it quickly spread to the whole of China and other countries, leading to a pandemic. The first case of COVID-19 from overseas immigration occurred in Taiwan on January 21, 2020. Besides its impact on the economy, COVID-19 has also caused public panic about unknown diseases due to the pandemic in many countries and the increasing number of cases worldwide. The purpose of this study was to investigate the COVID-19 case rate and mortality in the early stage of the pandemic and reveal associated factors by analyzing countries' data worldwide.
Method:
Our study used open data of countries around the world to explore the associated factors with the COVID-19 case rate and mortality, including obesity, aging, life expectancy, economic development index, literacy rate, population density, infectious diseases, and chronic diseases (the prevalence of cancer, cardiovascular disease, diabetes, tuberculosis), basic sanitation rate, medical resources (physician density, hospital bed density) were adopted by research.
Spatial autoregression models were used to explore the spatial distribution of the COVID-19 case rate and mortality. The study performed spatial autoregression analysis by two index dates, the first analysis time point (July 15, 2020, T1) and the second analysis time point (December 15, 2020, T2), respectively. To explore the spatial association between explanatory variables and outcomes, spatial autoregression models by a different definition of the spatial-correlation matrix were performed, including first-order adjacent border, second-order adjacent border, 500 kilometers adjacent, 1,000 kilometers adjacent, and 1,500 kilometers adjacent. The collinearity problem was also considered in our spatial autoregression models.
Results:
There were 175 countries included in the analysis. Of the 1,500 kilometers adjacent spatial-correlation matrix definition, removed some covariates with collinearity problem, the multivariate spatial regression analysis showed GDP (unit: per USD, estimate=0.46, p=0.033) and obesity rate (unit: per 100 persons, estimate=0.95, p<0.001) significant positive associated with T1 case rates; GDP (unit: per USD, estimate= 0.43, p=0.029) and obesity rate (unit: per 100 persons, estimate= 1.02, p<0.001) significant positive associated with T2 case rates.
Of the 1,500 kilometers adjacent spatial-correlation matrix definition, removed some covariates with collinearity problem, the multivariate spatial regression analysis showed obesity rate (unit: per 100 persons, estimate=0.75, p=0.001) and female lung cancer mortality (unit: per 100 thousand, estimate=0.65, p=0.047) significant positive associated with T1 mortality; only obesity rate (unit: per 100 persons, estimate= 0.93, p<0.001) significant positive associated with T2 mortality.
Conclusions:
The results in our study were consistent with previous studies. After controlling for the potential confounding factors, the obesity rate was positively associated with the COVID-19 case rate and mortality. Economic or chronic disease factors were also associated with the case rate in this study.
Keyword:COVID-19, pandemic, spatial autoregression models, case rate, mortality
1.Morens DM, Daszak P, Markel H, Taubenberger JK. Pandemic COVID-19 Joins History's Pandemic Legion. mBio 2020;11(3) (In eng). DOI: 10.1128/mBio.00812-20.
2.Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2021;222:108634. (In eng). DOI: 10.1016/j.clim.2020.108634.
3.Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020;288(2):192-206. (In eng). DOI: 10.1111/joim.13091.
4.Taiwan Centers For Disease Control. 嚴重特殊傳染性肺炎-疾病介紹. (https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A).
5.Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 2020;65:101205. (In eng). DOI: 10.1016/j.arr.2020.101205.
6.Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol 2020;42(1):3-11. (In eng).
7.Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5(7):667-678. (In eng). DOI: 10.1016/s2468-1253(20)30126-6.
8.Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020;26(6):729-734. (In eng). DOI: 10.1016/j.cmi.2020.03.026.
9.Routley N. infection-trajectory-flattening-the-covid19-curve. (https://www.visualcapitalist.com/infection-trajectory-flattening-the-covid19-curve/).
10.Lenzen M, Li M, Malik A, et al. Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS One 2020;15(7):e0235654. (In eng). DOI: 10.1371/journal.pone.0235654.
11.Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg 2020;78:185-193. (In eng). DOI: 10.1016/j.ijsu.2020.04.018.
12.Taiwan Centers For Disease Control. COVID-19疫苗. Taiwan Centers for Disease Control. (https://www.cdc.gov.tw/Category/List/P2pYv_BSNAzqDSK8Qhllew).
13.Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS One 2020;15(5):e0233147. (In eng). DOI: 10.1371/journal.pone.0233147.
14.Morais-Almeida M, Pité H, Aguiar R, Ansotegui I, Bousquet J. Asthma and the Coronavirus Disease 2019 Pandemic: A Literature Review. Int Arch Allergy Immunol 2020;181(9):680-688. (In eng). DOI: 10.1159/000509057.
15.Banerjee M, Gupta S, Sharma P, Shekhawat J, Gauba K. Obesity and COVID-19: A Fatal Alliance. Indian J Clin Biochem 2020;35(4):1-8. (In eng). DOI: 10.1007/s12291-020-00909-2.
16.Adepoju P. Tuberculosis and HIV responses threatened by COVID-19. Lancet HIV 2020;7(5):e319-e320. (In eng). DOI: 10.1016/s2352-3018(20)30109-0.
17.Korakas E, Ikonomidis I, Kousathana F, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 2020;319(1):E105-e109. (In eng). DOI: 10.1152/ajpendo.00198.2020.
18.Moujaess E, Kourie HR, Ghosn M. Cancer patients and research during COVID-19 pandemic: A systematic review of current evidence. Crit Rev Oncol Hematol 2020;150:102972. (In eng). DOI: 10.1016/j.critrevonc.2020.102972.
19.Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054-1062. (In eng). DOI: 10.1016/s0140-6736(20)30566-3.
20.Wang H, Yuan Z, Pavel MA, Hansen SB. The role of high cholesterol in age-related COVID19 lethality. bioRxiv 2020 (In eng). DOI: 10.1101/2020.05.09.086249.
21.Ergönül Ö, Akyol M, Tanrıöver C, et al. National case fatality rates of the COVID-19 pandemic. Clin Microbiol Infect 2020;27(1):118-24. (In eng). DOI: 10.1016/j.cmi.2020.09.024.
22.Dixit S. Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19? Med Hypotheses 2020;143:109854. (In eng). DOI: 10.1016/j.mehy.2020.109854.
23.Spring H. Health literacy and COVID-19. Health Info Libr J 2020;37(3):171-172. (In eng). DOI: 10.1111/hir.12322.
24.Gwenzi W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Sci Total Environ 2021;753:141751. (In eng). DOI: 10.1016/j.scitotenv.2020.141751.
25.Mushi V, Shao M. Tailoring of the ongoing water, sanitation and hygiene interventions for prevention and control of COVID-19. Trop Med Health 2020;48:47. (In eng). DOI: 10.1186/s41182-020-00236-5.
26.Bloom JA, Foroutanjazi S, Chatterjee A. The Impact of Hospital Bed Density on the COVID-19 Case Fatality Rate in the United States. Am Surg 2020;86(7):746-747. (In eng). DOI: 10.1177/0003134820939909.
27.Perone G. The determinants of COVID-19 case fatality rate (CFR) in the Italian regions and provinces: An analysis of environmental, demographic, and healthcare factors. Sci Total Environ 2021;755(Pt 1):142523. (In eng). DOI: 10.1016/j.scitotenv.2020.142523.
28.Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents 2020;55(5):105951. (In eng). DOI: 10.1016/j.ijantimicag.2020.105951.
29.Lee IC, Huo TI, Huang YH. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc 2020;83(6):521-523. (In eng). DOI: 10.1097/jcma.0000000000000319.
30.Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol 2020;35(5):744-748. (In eng). DOI: 10.1111/jgh.15047.
31.Abboud H, Abboud FZ, Kharbouch H, Arkha Y, El Abbadi N, El Ouahabi A. COVID-19 and SARS-Cov-2 Infection: Pathophysiology and Clinical Effects on the Nervous System. World Neurosurg 2020;140:49-53. (In eng). DOI: 10.1016/j.wneu.2020.05.193.
32.Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020;18(1):179. (In eng). DOI: 10.1186/s12967-020-02344-6.
33.Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol 2020;30(8):4381-4389. (In eng). DOI: 10.1007/s00330-020-06801-0.
34.Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obesity Research & Clinical Practice 2020;14(4):295-300. DOI: 10.1016/j.orcp.2020.07.002.
35.Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 2016;22(7 Suppl):s176-85. (In eng).
36.Iacobellis G, Malavazos AE, Ferreira T. COVID-19 Rise in Younger Adults with Obesity: Visceral Adiposity Can Predict the Risk. Obesity (Silver Spring) 2020;28(10):1795. (In eng). DOI: 10.1002/oby.22951.
37.Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods 2018;463:21-26. (In eng). DOI: 10.1016/j.jim.2018.08.005.
38.Barrientos M. IndexMundi. (https://www.indexmundi.com/factbook/countries).
39.Ferrucci L, Levine ME, Kuo PL, Simonsick EM. Time and the Metrics of Aging. Circ Res 2018;123(7):740-744. (In eng). DOI: 10.1161/circresaha.118.312816.
40.Wang XQ, Song G, Yang Z, et al. Association between ageing population, median age, life expectancy and mortality in coronavirus disease (COVID-19). Aging (Albany NY) 2020;12 (In eng). DOI: 10.18632/aging.104193.
41.Salimi S, Hamlyn JM. COVID-19 and Crosstalk With the Hallmarks of Aging. J Gerontol A Biol Sci Med Sci 2020;75(9):e34-e41. (In eng). DOI: 10.1093/gerona/glaa149.
42.Luy M, Di Giulio P, Di Lego V, Lazarevič P, Sauerberg M. Life Expectancy: Frequently Used, but Hardly Understood. Gerontology 2020;66(1):95-104. (In eng). DOI: 10.1159/000500955.
43.Nii-Trebi NI. Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges. Biomed Res Int 2017;2017:5245021. (In eng). DOI: 10.1155/2017/5245021.
44.Juma CA, Mushabaa NK, Abdu Salam F, Ahmadi A, Lucero-Prisno DE. COVID-19: The Current Situation in the Democratic Republic of Congo. Am J Trop Med Hyg 2020;103(6):2168-2170. (In eng). DOI: 10.4269/ajtmh.20-1169.
45.Murphy A, Abdi Z, Harirchi I, McKee M, Ahmadnezhad E. Economic sanctions and Iran's capacity to respond to COVID-19. Lancet Public Health 2020;5(5):e254. (In eng). DOI: 10.1016/s2468-2667(20)30083-9.
46.Anser MK, Islam T, Khan MA, et al. Identifying the Potential Causes, Consequences, and Prevention of Communicable Diseases (Including COVID-19). Biomed Res Int 2020;2020:8894006. (In eng). DOI: 10.1155/2020/8894006.
47.Hamad R, Elser H, Tran DC, Rehkopf DH, Goodman SN. How and why studies disagree about the effects of education on health: A systematic review and meta-analysis of studies of compulsory schooling laws. Soc Sci Med 2018;212:168-178. (In eng). DOI: 10.1016/j.socscimed.2018.07.016.
48.Baser O. Population density index and its use for distribution of Covid-19: A case study using Turkish data. Health Policy 2020 (In eng). DOI: 10.1016/j.healthpol.2020.10.003.
49.Parnell TA, Stichler JF, Barton AJ, Loan LA, Boyle DK, Allen PE. A concept analysis of health literacy. Nurs Forum 2019;54(3):315-327. (In eng). DOI: 10.1111/nuf.12331.
50.Levy H, Janke A. Health Literacy and Access to Care. J Health Commun 2016;21 Suppl 1(Suppl):43-50. (In eng). DOI: 10.1080/10810730.2015.1131776.
51.Liu GF, Sun MP, Wang ZY, Jian WY. [Association analysis between urbanization and non-communicable diseases and health-related behavior]. Beijing Da Xue Xue Bao Yi Xue Ban 2016;48(3):478-82. (In chi).
52.Parvez MK, Parveen S. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology 2017;60(1-2):1-7. (In eng). DOI: 10.1159/000478729.
53.Bhadra A, Mukherjee A, Sarkar K. Impact of population density on Covid-19 infected and mortality rate in India. Model Earth Syst Environ 2020:1-7. (In eng). DOI: 10.1007/s40808-020-00984-7.
54.Baden LR, Swaminathan S, Angarone M, et al. Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2016;14(7):882-913. (In eng). DOI: 10.6004/jnccn.2016.0093.
55.Addeo A, Friedlaender A. Cancer and COVID-19: Unmasking their ties. Cancer Treat Rev 2020;88:102041. (In eng). DOI: 10.1016/j.ctrv.2020.102041.
56.Wang B, Huang Y. Which type of cancer patients are more susceptible to the SARS-COX-2: Evidence from a meta-analysis and bioinformatics analysis. Crit Rev Oncol Hematol 2020;153:103032. (In eng). DOI: 10.1016/j.critrevonc.2020.103032.
57.Karunathilake SP, Ganegoda GU. Secondary Prevention of Cardiovascular Diseases and Application of Technology for Early Diagnosis. Biomed Res Int 2018;2018:5767864. (In eng). DOI: 10.1155/2018/5767864.
58.Mai F, Del Pinto R, Ferri C. COVID-19 and cardiovascular diseases. J Cardiol 2020;76(5):453-458. (In eng). DOI: 10.1016/j.jjcc.2020.07.013.
59.Abdi A, Jalilian M, Sarbarzeh PA, Vlaisavljevic Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res Clin Pract 2020;166:108347. (In eng). DOI: 10.1016/j.diabres.2020.108347.
60.Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018;14(2):88-98. (In eng). DOI: 10.1038/nrendo.2017.151.
61.Tadic M, Cuspidi C, Sala C. COVID-19 and diabetes: Is there enough evidence? J Clin Hypertens (Greenwich) 2020;22(6):943-948. (In eng). DOI: 10.1111/jch.13912.
62.Duarte R, Lönnroth K, Carvalho C, et al. Tuberculosis, social determinants and co-morbidities (including HIV). Pulmonology 2018;24(2):115-119. (In eng). DOI: 10.1016/j.rppnen.2017.11.003.
63.Ankrah AO, Glaudemans A, Maes A, et al. Tuberculosis. Semin Nucl Med 2018;48(2):108-130. (In eng). DOI: 10.1053/j.semnuclmed.2017.10.005.
64.Madan M, Pahuja S, Mohan A, et al. TB infection and BCG vaccination: are we protected from COVID-19? Public Health 2020;185:91-92. (In eng). DOI: 10.1016/j.puhe.2020.05.042.
65.Matilla F, Velleman Y, Harrison W, Nevel M. Animal influence on water, sanitation and hygiene measures for zoonosis control at the household level: A systematic literature review. PLoS Negl Trop Dis 2018;12(7):e0006619. (In eng). DOI: 10.1371/journal.pntd.0006619.
66.Luh J, Bartram J. Drinking water and sanitation: progress in 73 countries in relation to socioeconomic indicators. Bull World Health Organ 2016;94(2):111-121a. (In eng). DOI: 10.2471/blt.15.162974.
67.La Rosa G, Bonadonna L, Lucentini L, Kenmoe S, Suffredini E. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Res 2020;179:115899. (In eng). DOI: 10.1016/j.watres.2020.115899.
68.Yi M, Peng J, Zhang L, Zhang Y. Is the allocation of medical and health resources effective? Characteristic facts from regional heterogeneity in China. Int J Equity Health 2020;19(1):89. (In eng). DOI: 10.1186/s12939-020-01201-8.
69.Jang JH, Lee JH, Je MK, et al. Correlations Between the Incidence of National Notifiable Infectious Diseases and Public Open Data, Including Meteorological Factors and Medical Facility Resources. J Prev Med Public Health 2015;48(4):203-15. (In eng). DOI: 10.3961/jpmph.14.057.
70.D'Agostino M, Samuel NO, Sarol MJ, et al. Open data and public health. Rev Panam Salud Publica 2018;42:e66. (In eng). DOI: 10.26633/rpsp.2018.66.
71.Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 2020;14(4):295-300. (In eng). DOI: 10.1016/j.orcp.2020.07.002.
72.Raymundo CE, Oliveira MC, Eleuterio TA, et al. Spatial analysis of COVID-19 incidence and the sociodemographic context in Brazil. PLoS One 2021;16(3):e0247794. (In eng). DOI: 10.1371/journal.pone.0247794.
73.Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020;14(3):247-250. (In eng). DOI: 10.1016/j.dsx.2020.03.013.
74.Liu F, Liu F, Wang L. COVID-19 and cardiovascular diseases. J Mol Cell Biol 2021;13(3):161-167. (In eng). DOI: 10.1093/jmcb/mjaa064.
75.Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama 2020;323(11):1061-1069. (In eng). DOI: 10.1001/jama.2020.1585.
76.Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020;55(5) (In eng). DOI: 10.1183/13993003.00547-2020.
77.Gapminder Foundation. Gapminder. (https://www.gapminder.org/).
78.The United Nations. The World Bank. United States. (https://www.worldbank.org/).
79.WORLD LIFE EXPECTANCY. Coronary heart disease. (https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/).
80.Central Intelligence Agency. Obesity adult prevelence. America. (https://www.cia.gov/the-world-factbook/field/obesity-adult-prevalence-rate/).
81.Countryeconomy. Life expectancy. (https://countryeconomy.com/demography/life-expectancy/micronesia).
82.The Borgen Project. 10 FACT ABOUT LIFE WXPENTANCY IN THE MARSHALL ISLANDS. (https://borgenproject.org/life-expectancy-in-the-marshall-islands/).
83.International Diabetes Federation. Age-agjusted comparative prevevalence of diabetes. (https://diabetesatlas.org/data/en/indicators/2/).
84.Our World in Data. Coronary artery disease. (https://ourworldindata.org/country/kiribati).
85.Knoema. Literacy. (https://knoema.com/data/).
86.The United Nations. The World Bank(GDP per capita, PPP (current international $) ). United States. (https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?locations=AF).
87.Gapminder Foundation. Gapminder[literacy rate,adult(% of people age 15 and above)]. (https://www.gapminder.org/data/).
88.Gapminder Foundation. Gapminder(Lung cancer,deaths per 100,000 men). (https://www.gapminder.org/data/).
89.Gapminder Foundation. Gapminder(Lung cancer,deaths per 100,000 women). (https://www.gapminder.org/data/).
90.Gapminder Foundation. Gapminder(Colon&Rectum cancer deaths per 100,000 men). (https://www.gapminder.org/data/).
91.Gapminder Foundation. Gapminder(Colon&Rectum cancer deaths per 100,000 women). (https://www.gapminder.org/data/).
92.Gapminder Foundation. Gapminder(TB new cases per 100,000,estimated,all forms of tb). (https://www.gapminder.org/data/).
93.Gapminder Foundation. Gapminder(At least basic sanitation,overall access(%)). (https://www.gapminder.org/data/).
94.林文苑. 「天然災害老人弱勢族群社經脆弱度評估指標」之建立與空間聚集性分析應用. 都市與計劃 2011;38(3):219-243. (In 繁體中文). DOI: 10.6128/cp.38.3.219.
95.Wubuli A, Xue F, Jiang D, Yao X, Upur H, Wushouer Q. Socio-Demographic Predictors and Distribution of Pulmonary Tuberculosis (TB) in Xinjiang, China: A Spatial Analysis. PLoS One 2015;10(12):e0144010. (In eng). DOI: 10.1371/journal.pone.0144010.
96.Luenam A, Puttanapong N. Spatial and statistical analysis of leptospirosis in Thailand from 2013 to 2015. Geospat Health 2019;14(1) (In eng). DOI: 10.4081/gh.2019.739.
97.Huang R, Liu M, Ding Y. Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis. J Infect Dev Ctries 2020;14(3):246-253. (In eng). DOI: 10.3855/jidc.12585.
98.Bell BS. Spatial analysis of disease--applications. Cancer Treat Res 2002;113:151-82. (In eng). DOI: 10.1007/978-1-4757-3571-0_8.
99.Marcoulides KM, Raykov T. Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educ Psychol Meas 2019;79(5):874-882. (In eng). DOI: 10.1177/0013164418817803.
100.Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol 2019;72(6):558-569. (In eng). DOI: 10.4097/kja.19087.
101.Addeo A, Obeid M, Friedlaender A. COVID-19 and lung cancer: risks, mechanisms and treatment interactions. J Immunother Cancer 2020;8(1) (In eng). DOI: 10.1136/jitc-2020-000892.
102.Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. Jama 2020;324(13):1307-1316. (In eng). DOI: 10.1001/jama.2020.17021.