簡易檢索 / 詳目顯示

研究生: 陳睿彣
Chen, Jui-Wen
論文名稱: 以化學氣相沉積法合成負載於中孔洞之鈣鈦礦材料應用於光催化二氧化碳還原
Chemical Vapor Deposition Synthesis of CsPbBr3-mesoporous material for CO2 photoreduction reaction
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 洪偉修
Hung, Wei-Hsiu
高琨哲
Kao, Kun-Che
劉沂欣
Liu, Yi-Hsin
口試日期: 2023/07/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 中孔洞沸石奈米粒子化學氣相沉積法鈣鈦礦氧化石墨烯光催化二氧化碳還原
英文關鍵詞: mesoporous zeolite nanoparticles, chemical vapor deposition, perovskite, graphene-oxide, CO2 photoreduction reaction
DOI URL: http://doi.org/10.6345/NTNU202301558
論文種類: 學術論文
相關次數: 點閱:119下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以化學氣相沉積法結合中孔洞及碳材,在高溫反應 (700-900°C)下及不同反應時間(10-90 分鐘),將具有空氣及水氣敏感之鈣鈦礦結構附載於中孔洞材料中,並調控生長CsPbBr3/Cs4PbBr6異質結構,並且研究空氣及抽真空對於異質結構發光之影響。為避免孔洞外生長所造成鈣鈦礦氧化、水解等副反應,本研究利用高溫裂解界面活性劑或乙烯氣體以生長表面碳材(2.5-5 mmol/g SiO2),不僅將鈣鈦礦前驅物有效沉積,並同步生長及保護鈣鈦礦奈米粒子,經由X光繞射實驗及謝樂擬合經驗式證實奈米粒子 (<2 nm)包覆於複合材料中。此複合材料經由紫光 (405 nm)照射後,原鈣鈦礦螢光強度粹滅18倍,顯示其具有電荷分離效果。
    在二氧化碳還原實驗中,我們利用即時反應偵測氫氣、甲烷及一氧化碳生成,同時優化二氧化碳流速 (10-50 sccm)對於殘留空氣及反應時間 (0-6小時)之影響,比較三種孔洞載體 (MZNs、Ar-MZNs、MGNs)在不同溫度 (700-900oC)負載鈣鈦礦材料進行二氧化碳還原反應。其中以乙烯裂解產生之MGNs在UV光(365 nm)下具有最佳的催化效率,其中氫氣、甲烷及一氧化碳的產生量較初始值提升13.3 %、14.7 %、10.0 %,此結果回應上述螢光淬滅之實驗結果,同時也說明氣相沉積法合成中孔洞-鈣鈦礦複合材料應用於光催化二氧化碳可行性。

    In this study, the chemical vapor deposition method is used to combine mesopores and carbon materials. Under high temperature reaction (700-900°C) and different reaction times (10-90 minutes), the perovskite structure with air and water vapor sensitivity is attached to the mesopores. Materials, and control the growth of CsPbBr3/Cs4PbBr6 heterostructures, and study the effects of air and vacuum on the luminescence of heterostructures. In order to avoid side reactions such as perovskite oxidation and hydrolysis caused by the growth outside the pores, this study used high-temperature pyrolysis surfactant or ethylene gas to grow surface carbon materials (2.5-5 mmol/g SiO2), not only the perovskite precursor Efficient deposition, simultaneous growth and protection of perovskite nanoparticles, through powder X-ray diffraction experiments and Scherrer fitting empirical formula to prove that nanoparticles (<2 nm) are coated in composite materials. After the composite material is irradiated with purple light (405 nm), the fluorescence intensity of the original perovskite is extinguished by 18 times, which shows that it has a charge separation effect.
    In the carbon dioxide reduction (CO2RR) experiment, we use the real-time reaction to detect the generation of hydrogen, methane and carbon monoxide, and optimized the carbon dioxide flow rate (10-50 sccm) on the residual air and reaction time (0-6 hours). Three porous supports (MZNs, Ar-MZNs, MGNs) loaded perovskite materials at different temperatures (700-900°C) for carbon dioxide reduction reaction. Among them, the MGNs produced by ethylene cracking have the best catalytic efficiency under UV light (365 nm), and the production of hydrogen, methane and carbon monoxide increased by 13.3%, 14.7%, and 10.0% compared with the initial value. The experimental results of quenching also illustrate the feasibility of mesoporous-perovskite composite materials synthesized by vapor deposition method for photocatalysis of carbon dioxide.

    謝誌 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 純無機鉛-鹵素鈣鈦礦材料概要 1 1.2 鈣鈦礦維度調控 1 1.2.1 鈣鈦礦之穩定性 2 1.2.2 鈣鈦礦-孔洞材料複合材料 5 1.3光催化二氧化碳還原反應 (CO2RR) 7 1.3.1 鈣鈦礦 8 1.3.2 異質結構 9 1.4 先前研究 10 1.5 研究動機 13 第二章 實驗方法 14 2.1化學藥品 14 2.2 合成沸石晶種(beta zeolite seed, BZS) 16 2.3合成中孔洞材料 16 2.3.1 中孔洞沸石奈米粒子 (mesoporous zeolite nanoparticles, MZNs) 17 2.3.2 氧化石墨烯化中孔洞沸石奈米粒子(Mesoporous graphene-oxide nanoparticles, MGNs) 17 2.4 中孔洞沸石-鈣鈦礦複合材料 18 2.5 二氧化碳還原反應 19 2.6 實驗與鑑定裝置 20 2.6.1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 20 2.6.2 紫外-可見光光譜 (UV-Visible Spectrophotometer, UV-Vis) 20 2.6.3 四極碳針電性量測台 (Electrochemical Workstation) 20 2.6.4 螢光光譜儀 (Photoluminescence, PL) 21 2.6.5 比表面積分析儀及孔徑分析 (BET) 22 2.6.6 X 光粉末繞射儀 (Powder X-ray Diffraction, P-XRD) 23 2.6.7 X光吸收光譜-吸收X光延伸精細結構 (extended X-ray absorption fine structure. EXAFS) 24 2.6.8化學氣相沉積爐 (Chemical Vapor Deposition, CVD) 25 2.6.9 元素分析 (Elemental Analyzer, EA) 26 2.6.10 衰減式全反射傅立葉轉換紅外線光譜 (Attenuated Total Reflection Fourier-Transform Infrared Spectrometer , ATR-FTIR) 26 2.6.11氣相層析儀-阻擋放電離子化檢測器 (Gas chromatography- Barrier Ionization Discharge, GC-BID) 26 2.6.12 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 27 2.7名稱縮寫統整 28 第三章 結果與討論 29 3.1 以孔洞附載鈣鈦礦異質結構之合成探討 29 3.1.1 反應時間 29 3.1.2 反應溫度 40 3.2 鈣鈦礦孔洞碳材異質結構之探討 46 3.2.1 以乙烯裂解產生中孔洞碳材 46 3.2.2以界面活性劑裂解產生中孔洞碳材 47 3.2.3 中孔洞碳材對鈣鈦礦生長之影響 52 3.3 光催化二氧化碳還原 61 3.3.1 原位實驗流速優化 62 3.3.2 鈣鈦礦附載中孔洞材料之催化效率 63 第四章 結論及未來展望 76 參考文獻 77

    1. Akkerman, Q. A.; Manna, L., What Defines a Halide Perovskite? ACS Energy Letters 2020, 5 (2), 604-610.
    2. Fu, Y.; Zhu, H.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S., Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Nano Lett. 2016, 16 (2), 1000-1008.
    3. He, Y.; Matei, L.; Jung, H. J.; McCall, K. M.; Chen, M.; Stoumpos, C. C.; Liu, Z.; Peters, J. A.; Chung, D. Y.; Wessels, B. W.; Wasielewski, M. R.; Dravid, V. P.; Burger, A.; Kanatzidis, M. G., High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications 2018, 9 (1), 1609.
    4. Gonzalez-Carrero, S.; Francés-Soriano, L.; González-Béjar, M.; Agouram, S.; Galian, R. E.; Pérez-Prieto, J., The Luminescence of CH3NH3PbBr3 Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. Small 2016, 12 (38), 5245-5250.
    5. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15 (6), 3692-3696.
    6. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L., Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the American Chemical Society 2015, 137 (32), 10276-10281.
    7. Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P., Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. Nano Lett. 2016, 16 (8), 4838-4848.
    8. Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373 (6557), 902-907.
    9. Li, G.; Su, Z.; Canil, L.; Hughes, D.; Aldamasy, M. H.; Dagar, J.; Trofimov, S.; Wang, L.; Zuo, W.; Jerónimo-Rendon, J. J.; Byranvand, M. M.; Wang, C.; Zhu, R.; Zhang, Z.; Yang, F.; Nasti, G.; Naydenov, B.; Tsoi, W. C.; Li, Z.; Gao, X.; Wang, Z.; Jia, Y.; Unger, E.; Saliba, M.; Li, M.; Abate, A., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 2023, 379 (6630), 399-403.
    10. Li, H.; Zhou, J.; Tan, L.; Li, M.; Jiang, C.; Wang, S.; Zhao, X.; Liu, Y.; Zhang, Y.; Ye, Y.; Tress, W.; Yi, C., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science Advances 2022, 8 (28), eabo7422.
    11. Zhang, Q.; Sun, X.; Zheng, W.; Wan, Q.; Liu, M.; Liao, X.; Hagio, T.; Ichino, R.; Kong, L.; Wang, H.; Li, L., Band Gap Engineering toward Wavelength Tunable CsPbBr3 Nanocrystals for Achieving Rec. 2020 Displays. Chemistry of Materials 2021, 33 (10), 3575-3584.
    12. Wang, C.; Dai, G.; Wang, J.; Cui, M.; Yang, Y.; Yang, S.; Qin, C.; Chang, S.; Wu, K.; Liu, Y.; Zhong, H., Low-Threshold Blue Quasi-2D Perovskite Laser through Domain Distribution Control. Nano Lett. 2022, 22 (3), 1338-1344.
    13. Lin, H.-C.; Lee, Y.-C.; Lin, C.-C.; Ho, Y.-L.; Xing, D.; Chen, M.-H.; Lin, B.-W.; Chen, L.-Y.; Chen, C.-W.; Delaunay, J.-J., Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale 2022, 14 (28), 10075-10081.
    14. Lin, C.-C.; Liu, T.-R.; Lin, S.-R.; Boopathi, K. M.; Chiang, C.-H.; Tzeng, W.-Y.; Chien, W.-H. C.; Hsu, H.-S.; Luo, C.-W.; Tsai, H.-Y.; Chen, H.-A.; Kuo, P.-C.; Shiue, J.; Chiou, J.-W.; Pong, W.-F.; Chen, C.-C.; Chen, C.-W., Spin-Polarized Photocatalytic CO2 Reduction of Mn-Doped Perovskite Nanoplates. Journal of the American Chemical Society 2022, 144 (34), 15718-15726.
    15. Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; Chen, K.-H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5 (1), 262-268.
    16. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society 2017, 139 (16), 5660-5663.
    17. González-Carrero, S.; Galian, R. E.; Pérez-Prieto, J., Organometal Halide Perovskites: Bulk Low-Dimension Materials and Nanoparticles. Particle & Particle Systems Characterization 2015, 32 (7), 709-720.
    18. Jing, Q.; Xu, Y.; Su, Y.; Xing, X.; Lu, Z., A systematic study of the synthesis of cesium lead halide nanocrystals: does Cs4PbBr6 or CsPbBr3 form? Nanoscale 2019, 11 (4), 1784-1789.
    19. Wu, L.; Hu, H.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q.; Yang, D.; Liu, Q.; Zhao, Y.; Sun, B.; Zhang, Q.; Yin, Y., From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism. Nano Lett. 2017, 17 (9), 5799-5804.
    20. Palazon, F.; Urso, C.; De Trizio, L.; Akkerman, Q.; Marras, S.; Locardi, F.; Nelli, I.; Ferretti, M.; Prato, M.; Manna, L., Postsynthesis Transformation of Insulating Cs4PbBr6 Nanocrystals into Bright Perovskite CsPbBr3 through Physical and Chemical Extraction of CsBr. ACS Energy Letters 2017, 2 (10), 2445-2448.
    21. Wei, Y.; Cheng, Z.; Lin, J., An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48 (1), 310-350.
    22. Cheng, S.; Zhong, H., What Happens When Halide Perovskites Meet with Water? The Journal of Physical Chemistry Letters 2022, 13 (10), 2281-2290.
    23. Liu, M.; Zhao, J.; Luo, Z.; Sun, Z.; Pan, N.; Ding, H.; Wang, X., Unveiling Solvent-Related Effect on Phase Transformations in CsBr–PbBr2 System: Coordination and Ratio of Precursors. Chemistry of Materials 2018, 30 (17), 5846-5852.
    24. Huang, S.; Li, Z.; Wang, B.; Zhu, N.; Zhang, C.; Kong, L.; Zhang, Q.; Shan, A.; Li, L., Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Applied Materials & Interfaces 2017, 9 (8), 7249-7258.
    25. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications 2017, 8 (1), 15218.
    26. Wang, Y.; Ren, Y.; Zhang, S.; Wu, J.; Song, J.; Li, X.; Xu, J.; Sow, C. H.; Zeng, H.; Sun, H., Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics 2018, 1 (1), 96.
    27. Wei, Y.; Deng, X.; Xie, Z.; Cai, X.; Liang, S.; Ma, P. a.; Hou, Z.; Cheng, Z.; Lin, J., Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling–Shrinking Strategy toward Superior Water Resistance. Advanced Functional Materials 2017, 27 (39), 1703535.
    28. Meyns, M.; Perálvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibáñez, M.; Nafria, R.; Genç, A.; Arbiol, J.; Kovalenko, M. V.; Carreras, J.; Cabot, A.; Kanaras, A. G., Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. ACS Applied Materials & Interfaces 2016, 8 (30), 19579-19586.
    29. Yang, G.; Fan, Q.; Chen, B.; Zhou, Q.; Zhong, H., Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nanocomposites with enhanced stability. Journal of Materials Chemistry C 2016, 4 (48), 11387-11391.
    30. Chen, Y.-M.; Zhou, Y.; Zhao, Q.; Zhang, J.-Y.; Ma, J.-P.; Xuan, T.-T.; Guo, S.-Q.; Yong, Z.-J.; Wang, J.; Kuroiwa, Y.; Moriyoshi, C.; Sun, H.-T., Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application. ACS Applied Materials & Interfaces 2018, 10 (18), 15905-15912.
    31. Wang, H.-C.; Lin, S.-Y.; Tang, A.-C.; Singh, B. P.; Tong, H.-C.; Chen, C.-Y.; Lee, Y.-C.; Tsai, T.-L.; Liu, R.-S., Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angewandte Chemie International Edition 2016, 55 (28), 7924-7929.
    32. Chen, Z.; Gu, Z.-G.; Fu, W.-Q.; Wang, F.; Zhang, J., A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film. ACS Applied Materials & Interfaces 2016, 8 (42), 28737-28742.
    33. Zhang, Q.; Wang, B.; Zheng, W.; Kong, L.; Wan, Q.; Zhang, C.; Li, Z.; Cao, X.; Liu, M.; Li, L., Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature Communications 2020, 11 (1), 31.
    34. Wang, B.; Zhang, C.; Zheng, W.; Zhang, Q.; Bao, Z.; Kong, L.; Li, L., Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials 2020, 32 (1), 308-314.
    35. Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; Lightfoot, H. D.; Manheimer, W.; Mankins, J. C.; Mauel, M. E.; Perkins, L. J.; Schlesinger, M. E.; Volk, T.; Wigley, T. M. L., Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 2002, 298 (5595), 981-987.
    36. Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M., Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222-243.
    37. Wu, J.; Huang, Y.; Ye, W.; Li, Y., CO2 Reduction: From the Electrochemical to Photochemical Approach. Advanced Science 2017, 4 (11), 1700194.
    38. Zhang, Z.; Wang, Z.; Cao, S.-W.; Xue, C., Au/Pt Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion. The Journal of Physical Chemistry C 2013, 117 (49), 25939-25947.
    39. Solymosi, F.; Tombácz, I., Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2. Catal. Lett. 1994, 27 (1), 61-65.
    40. Wu, J. C. S.; Lin, H.-M.; Lai, C.-L., Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General 2005, 296 (2), 194-200.
    41. Li, K.; Peng, T.; Ying, Z.; Song, S.; Zhang, J., Ag-loading on brookite TiO2 quasi nanocubes with exposed {210} and {001} facets: Activity and selectivity of CO2 photoreduction to CO/CH4. Applied Catalysis B: Environmental 2016, 180, 130-138.
    42. Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N., II; Sun, Y.-P., Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO2 Conversion and Beyond. Journal of the American Chemical Society 2011, 133 (13), 4754-4757.
    43. Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H., Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society 2014, 136 (45), 15969-15976.
    44. Wang, X.; Li, K.; He, J.; Yang, J.; Dong, F.; Mai, W.; Zhu, M., Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy 2020, 78, 105388.
    45. Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L., Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. Chemistry – A European Journal 2017, 23 (40), 9481-9485.
    46. Huang, J.-N.; Dong, Y.-J.; Zhao, H.-B.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Efficient encapsulation of CsPbBr3 and Au nanocrystals in mesoporous metal–organic frameworks towards synergetic photocatalytic CO2 reduction. Journal of Materials Chemistry A 2022, 10 (47), 25212-25219.
    47. Xu, Y.-F.; Yang, M.-Z.; Chen, H.-Y.; Liao, J.-F.; Wang, X.-D.; Kuang, D.-B., Enhanced Solar-Driven Gaseous CO2 Conversion by CsPbBr3 Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst. ACS Applied Energy Materials 2018, 1 (9), 5083-5089.
    48. Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J., Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications 2020, 11 (1), 4613.
    49. Kipkorir, A.; DuBose, J.; Cho, J.; Kamat, P. V., CsPbBr3–CdS heterostructure: stabilizing perovskite nanocrystals for photocatalysis. Chemical Science 2021, 12 (44), 14815-14825.
    50. Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A., Heterojunction Photocatalysts. Adv. Mater. 2017, 29 (20), 1601694.
    51. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chemistry of Materials 2018, 30 (22), 8303-8313.
    52. 張云柔. 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用. 國立臺灣師範大學, 台北市, 2019.
    53. 簡佑珊. 以溶劑裂解合成中孔洞氧化石墨烯及其摻雜之應用. 國立臺灣師範大學, 台北市, 2022.
    54. 傅宇謙. 以化學氣相沉積合成生長錳摻雜鈣鈦礦奈米粒子及其於中孔洞沸石中之限制生長. 國立臺灣師範大學, 台北市, 2021.
    55. Maddalena, R.; Hall, C.; Hamilton, A., Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis. Thermochim. Acta 2019, 672, 142-149.
    56. Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G., Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design 2013, 13 (7), 2722-2727.
    57. Kang, B.; Biswas, K., Exploring Polaronic, Excitonic Structures and Luminescence in Cs4PbBr6/CsPbBr3. The Journal of Physical Chemistry Letters 2018, 9 (4), 830-836.
    58. Xu, J.; Huang, W.; Li, P.; Onken, D. R.; Dun, C.; Guo, Y.; Ucer, K. B.; Lu, C.; Wang, H.; Geyer, S. M.; Williams, R. T.; Carroll, D. L., Imbedded Nanocrystals of CsPbBr3 in Cs4PbBr6: Kinetics, Enhanced Oscillator Strength, and Application in Light-Emitting Diodes. Adv. Mater. 2017, 29 (43), 1703703.
    59. Lai, M.; Shin, D.; Jibril, L.; Mirkin, C. A., Combinatorial Synthesis and Screening of Mixed Halide Perovskite Megalibraries. Journal of the American Chemical Society 2022, 144 (30), 13823-13830.
    60. Di Girolamo, D.; Dar, M. I.; Dini, D.; Gontrani, L.; Caminiti, R.; Mattoni, A.; Graetzel, M.; Meloni, S., Dual effect of humidity on cesium lead bromide: enhancement and degradation of perovskite films. Journal of Materials Chemistry A 2019, 7 (19), 12292-12302.
    61. Kleitz, F.; Schmidt, W.; Schüth, F., Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous Mesoporous Mater. 2003, 65 (1), 1-29.

    下載圖示
    QR CODE